Polímeros: Ciência e Tecnologia
https://www.revistapolimeros.org.br/article/doi/10.1590/0104-1428.2103
Polímeros: Ciência e Tecnologia
Scientific & Technical Article

Adsorption of BSA (Bovine Serum Albuminum) and lysozyme on poly(vinyl acetate) particles

Santos, Dirceu Pereira dos; Alves, Tito Lívio Moitinho; Pinto, José Carlos

Downloads: 0
Views: 356

Abstract

Poly(vinyl acetate) (PVAc) particles find many uses in the biomedical field, including the use as particle embolizers. Particularly, embolizing particles can combine physical and chemical effects when they are doped with pharmaceuticals. For this reason, the adsorption of bovine serum albuminum (BSA) and lysozyme (used as model biomolecules) on PVAc particles produced through suspension polymerization is studied in the present manuscript in a broad range of pH values. It is shown that significant amounts of BSA and lysozyme can be adsorbed onto PVAc particles in the vicinities of the isoelectric point of the biomolecules (0.65mg of BSA and 1.0mg of lysozyme per g of PVAc), allowing for production of chemoembolizers through adsorption. Particularly, it is shown that lysozyme still presents residual activity after the adsorption process, which can constitute very important characteristic for real biomedical applications.

Keywords

poly(vinyl acetate), lysozyme, Bovine Serum Albuminum (BSA), suspension polymerization, adsorption.

References

1. Cavallaro, G., Fresta, M., Giammona, G., Puglisi, G., & Villari, A. (1994). Entrapment of β-lactams antibiotics in polyethylcyanoacrylate nanoparticles: Studies on the possible in vivo application of this colloidal delivery system. International Journal of Pharmaceutics, 111(1), 31-41. http://dx.doi.org/10.1016/0378-5173(94)90399-9.

2. Brannon-Peppas, L. (1995). Recent advances on the use of biodegradable microparticles and nanoparticles in controlled drug delivery. International Journal of Pharmaceutics, 116(1), 1-9. http://dx.doi.org/10.1016/0378-5173(94)00324-X.

3. Fresta, M., Cavallaro, G., Giammona, G., Wehrli, E., & Puglisi, G. (1996). Preparation and characterization of polyethyl-2-cyanoacrylate nanocapsules containg antiepileptic drugs. Biomaterials, 17(8), 751-758. PMid:8730958. http://dx.doi.org/10.1016/0142-9612(96)81411-6.

4. Fontana, G., Pitarresi, G., Tomarchio, V., Carlisi, B., & Biagio, P. L. S. (1998). Preparation, characterization and in vitro antimicrobial activity of ampicillin-loaded polyethylcyanoacrylate nanoparticles. Biomaterials, 19(11-12), 1009-1017. PMid:9692799. http://dx.doi.org/10.1016/S0142-9612(97)00246-9.

5. Uhrich, K. E., Cannizzaro, S. M., Langer, R. S., & Shakesheff, K. M. (1999). Polymeric systems for controlled drug release. Chemical Reviews, 99(11), 3181-3198. PMid:11749514. http://dx.doi.org/10.1021/cr940351u.

6. Pillai, O., & Panchagnula, R. (2001). Polymers in drug delivery. Current Opinion in Chemical Biology, 5(4), 447-451. PMid:11470609. http://dx.doi.org/10.1016/S1367-5931(00)00227-1.

7. Takahashi, T. (2002). Development and clinical application of drug delivery systems for cancer treatment. International Journal of Clinical Oncology, 7(4), 206-218. PMid:12202974. http://dx.doi.org/10.1007/s101470200032.

8. Iconomopoulou, S. M., Andreopoulou, A. K., Soto, A., Kallitsis, J. K., & Voyiatzis, G. A. (2005). Incorporation of low molecular weight biocides into polystyrene-divinyl benzene beads. Journal of Controlled Release, 102(1), 223-233. PMid:15653147. http://dx.doi.org/10.1016/j.jconrel.2004.10.006.

9. Choi, S. W., & Kim, J. H. (2007). Design of surface-modified poly(D,L-lactide-co-glycolide) nanoparticles for targeted drug delivery to bone. Journal of Controlled Release, 122(1), 24-30. PMid:17628158. http://dx.doi.org/10.1016/j.jconrel.2007.06.003.

10. Voltan, R., Castaldello, A., Brocca-Cofano, E., Altavilla, G., Caputo, A., Laus, M., Sparnacci, K., Ensoli, B., Spaccasassi, S., Ballestri, M., & Tondelli, L. (2007). Preparation and characterization of innovative protein-coated poly(methylmethacrylate) core-shell nanoparticles for vaccine purpose. Pharmaceutical Research, 24(10), 1870-1882. PMid:17476465. http://dx.doi.org/10.1007/s11095-007-9310-8.

11. Liapi, E., Lee, K., Georgiades, C. C., Hong, K., & Geschwind, J. H. (2008). Drug-eluting particles for interventional pharmacology. Techniques in Vascular and Interventional Radiology, 10(4), 261-269. PMid:18572139. http://dx.doi.org/10.1053/j.tvir.2008.03.003.

12. Ito, F., Fujimori, H., Honnami, H., Kawakami, H., Kanamura, K., & Makino, K. (2008). Effect of polyethylene glycol on preparation of rifampicin-loaded PLGA microspheres with membrane emulsification technique. Colloids and Surfaces. B, Biointerfaces, 66(1), 65-70. PMid:18585903. http://dx.doi.org/10.1016/j.colsurfb.2008.05.011.

13. Oliveira, M. A. M., Melo, P. A. Jr, Nele, M., & Pinto, J. C. (2011). In-situ incorporation of amoxicillin in PVA/PVAc-co-PMMA particles during suspension polymerization. Macromolecular Symposia, 299/300(1), 34-40. http://dx.doi.org/10.1002/masy.200900144.

14. Oliveira, M.A.M., Melo, P.A. Jr., Nele, M., & Pinto, J.C. (2012). Suspension copolymerization on vinyl acetate and methyl methacrylate in the presence of amoxicillin. Macromolecular Reaction Engineering, 6, 280-292. http://dx.doi.org/10.1002/mren.201100083

15. Oliveira, M. A. M., Melo, P. A. Jr, Nele, M., & Pinto, J. C. (2012). In situ incorporation of doxorubicin in copolymer particles during suspension polymerization. Macromolecular Symposia, 319(1), 23-33. http://dx.doi.org/10.1002/masy.201100249.

16. Kadir, S.(1982). Selected techniques in interventional radiology (pp. 104-141). London: W.B. Sunders. http://dx.doi.org/10.1148/145.3.606

17. Smith, S. J. (2000). Uterine fibroid embolization. American Family Physician, 61(12), 3601-3607, 3611-3612. PMid:10892632.

18. Kisilevzky, N., & Martins, M. (2003). Embolização uterina para tratamento de mioma sintomático: experiência inicial e revisão da literatura. Radiologia Brasileira, 36(3), 129-140. http://dx.doi.org/10.1590/S0100-39842003000300003.

19. Mendes, W. D. S., Chagas, V. L. A., Pinto, J. C., Caldas, J. G., & Espinosa, G. (2005). Embolização pré operatória de tumores renais com microparticulas esféricas de tecnologia nacional. (Spherus®-First Line Brasil). Revista do Colégio Brasileiro de Cirurgiões, 32, 51-55. http://dx.doi.org/10.1590/S0100-69912008000100012.

20. Owen, R. J. T. (2008). Embolization of musculoskeletal tumors. Radiologic Clinics of North America, 46(3), 535-543, vi. PMid:18707961. http://dx.doi.org/10.1016/j.rcl.2008.02.002.

21. Kato, T., Nemoto, R., Mori, H., & Kumagai, I. (1980). Sustained-release properties of microencapsulated mitomycin C with ethylcellulose infused into the renal renal artery of the dog. Cancer, 46(1), 14-21. PMid:7388756. http://dx.doi.org/10.1002/1097-0142(19800701)46:1<14::AID-CNCR2820460103>3.0.CO;2-N.

22. Kato, T., Nemoto, R., Mori, H., Takahashi, M., & Harada, M. (1981). Arterial chemoembolization with mitomycin C microcapsules in the treatment of primary or secondary carcinoma of the kidney, liver, bone and intrapelvic organs. Cancer, 48(3), 674-680. PMid:6166362. http://dx.doi.org/10.1002/1097-0142(19810801)48:3<674::AID-CNCR2820480303>3.0.CO;2-E.

23. Wallace, S., Charnsangavej, C., Carrasco, C., & Bechtel, W. (1984). Infusion-embolization. Cancer, 54(11, Suppl), 2751-2765. PMid:6093984. http://dx.doi.org/10.1002/1097-0142(19841201)54:2+<2751::AID-CNCR2820541423>3.0.CO;2-5.

24. Lewis, A. L., Gonzalez, M., Lloyd, A. W., Hall, B., Tang, Y., Willis, S. L., Leppard, S. W., Wolfenden, L. C., Palmer, R. R., & Stratford, P. W. (2006). DC bead: in vitro characterization of a drug-delivery device for transarterial chemoembolization. Journal of Vascular and Interventional Radiology, 17(2 Pt 1), 335-342. PMid:16517780. http://dx.doi.org/10.1097/01.RVI.0000195323.46152.B3.

25. Pinto, J. C., Niemeyer, M., Espinosa, G., Silva, F. M., & Melo, P. A. Jr. (2004). Patent PI04044952-7. Processo de síntese de poli(álcool vinílico) e/ou poli(acetato vinila) com morfologia esférica e estrutura casca-núcleo e seu uso na embolização vascular. Rio de Janeiro: INPI.

26. Laurent, A. (2007). Microspheres and nonspherical particles for embolization. Techniques in Vascular and Interventional Radiology, 10(4), 248-256. PMid:18572137. http://dx.doi.org/10.1053/j.tvir.2008.03.010.

27. Stampfl, S., Bellemann, N., Stampfl, U., Radeleff, B., Lopez-Benitez, R., Sommer, C.-M., Thierjung, H., Berger, I., & Richter, G. M., (2008). Inflammation and recanalization of four different spherical embolization agents in the porcine kidney model. Journal of Vascular and Interventional Radiology, 19(4), 577-586. PMid:18375304. http://dx.doi.org/10.1016/j.jvir.2008.01.011.

28. Sandler, S. R., Karo, W., Bonesteel, J.-A., & Pearce, E. M.(1998). Polymer synthesis and characterization. New York: Academic Press.

29. DeMerlis, C. C., & Schoneker, D. R. (2003). Review of the oral toxicity of polyvinyl alcohol (PVA). Food and Chemical Toxicology, 41(3), 319-326. PMid:12504164. http://dx.doi.org/10.1016/S0278-6915(02)00258-2.

30. Santos, J. G. F. Jr, Peixoto, L. S., Nele, M., Melo, P. A., & Pinto, J. C. (2006). Theorical and experimental investigation of the production of PMMA-based bone cement. Macromolecular Symposia, 243(1), 1-12. http://dx.doi.org/10.1002/masy.200651101.

31. Uchegbu, I. F., & Schätzlein, A. G. (2006). Polymers in drug delivery. Memphis: LLC.

32. Peixoto, L. S., Silva, F. M., Niemeyer, M. A. L., Espinosa, G., Melo, P. A., Nele, M., & Pinto, J. C. (2006). Synthesis of poly(vinyl alcohol) and/or poly(vinyl acetate) particles with spherical morphology and core-shell structure and its use in vascular embolization. Macromolecular Symposia, 243(1), 190-199. http://dx.doi.org/10.1002/masy.200651118.

33. Peixoto, L. S., Melo, P., Nele, M., & Pinto, J. C. (2009). Expanded core/shell (poly(vinyl acetate)/poly(vinyl alcohol) particles for embolization. Macromolecular Materials and Engineering, 294(8), 463-471. http://dx.doi.org/10.1002/mame.200900028.

34. Peixoto, L. S., Cordeiro, F., Melo, P., Nele, M., & Pinto, J. (2011). Synthesis of spherical core-shell PVAc-co-PMMA/PVA particles for use in vascular embolization. Macromolecular Symposia, 299-300(1), 132-138. http://dx.doi.org/10.1002/masy.200900152.

35. Sulkowska, A. (2002). Interaction of drugs with bovine and human serum albumin. Journal of Molecular Structure, 614(1-3), 227-232. http://dx.doi.org/10.1016/S0022-2860(02)00256-9.

36. Sevilla, P., Rivas, J. M., García-Blanco, F., García-Ramos, J. V., & Sánchez-Cortés, S. (2007). Identification of the antitumoral drug emodin binding sites in bovine serum albumin by spectroscopic methods. Biochimica et Biophysica Acta (BBA): Proteins and Proteomics, 1774(11), 1359-1369. http://dx.doi.org/10.1016/j.bbapap.2007.07.022.

37. Peng, M., Shi, S., & Zhang, Y. (2012). Investigation of proton pump inhibitors binding with bovine serum albumin and their relationship to molecular. Journal of Luminescence, 132(8), 1921-1928. http://dx.doi.org/10.1016/j.jlumin.2012.03.011.

38. Goldberg, R. J. (1952). A theory of antibody antigen reactions 1: theory for reactions of multivalent antigen with bivalent and univalent antibody. Journal of the American Chemical Society, 74(22), 5715-5725. http://dx.doi.org/10.1021/ja01142a045.

39. Axelsson, I. (1978). Characterization of proteins and other macromolecules by agarose gel chromatography. Journal of Chromatography. A, 152(1), 21-32. http://dx.doi.org/10.1016/S0021-9673(00)85330-3.

40. Hirayama, K., Akashi, S., Furuya, M., & Fukuhara, K. (1990). Rapid confirmation and revision of the primary structure of bovine serum albumin by ESIMS and Frit-FAB LC/MS. Biochemical and Biophysical Research Communications, 173(2), 639-646. PMid:2260975. http://dx.doi.org/10.1016/S0006-291X(05)80083-X.

41. Mastromatteo, M., Lecce, L., Vietro, N. D., Favia, P., & Nobile, M. A. D. (2011). Plasma deposition processes from acrylic/methane on natural fibres to control the kinetic release of lysozyme from PVOH monolayer film. Journal of Food Engineering, 104(3), 373-379. http://dx.doi.org/10.1016/j.jfoodeng.2010.12.032.

42. Corradini, C., Alfieri, I., Cavazza, A., Lantano, C., Lorenzi, A., Zucchetto, N., & Montenero, A. (2013). Antimicrobial films containing lysozyme for active packaging obtained by sol-gel technique. Journal of Food Engineering, 119(3), 580-587. http://dx.doi.org/10.1016/j.jfoodeng.2013.05.046.

43. Arcan, I., & Yemenicioglu, A. (2013). Development of fexible zein-wax composite and zein-fatty acid blend films for controlled release of lysozyme. Food Research International, 51(1), 208-216. http://dx.doi.org/10.1016/j.foodres.2012.12.011.

44. Saravanan, R., Shanmugam, A., Ashok, P., Kumar, D. S., Anand, K., Suman, A., & Devadoss, F. R. (2007). Studies on isolation and partial purification of lysozyme from egg white of the love bird (Agapornis species). African Journal of Biotechnology, 8, 107-109. http://dx.doi.org/10.5897/AJB.

45. Scaman, C., Nakai, S., & Aminlari, M. (2005). Effect of pH, temperature and sodium bisulfite or cysteine on the level of maillard-based conjugation of lysozyme with dextran, galactomannan and mannan. Food Chemistry, 9, 368-380. http://dx.doi.org/10.1016/j.foodchem.2005.08.003.

46. Leysen, S., Van Herreweghe, J. M., Callewaert, L., Heirbaut, M., Buntinx, P., Michiels, C. W., & Strelkov, S. V. (2011). Molecular basis of bacterial defense against host lysozymes: x-ray structure of periplasmic lysozyme inhibitors Plil and PliC. Journal of Molecular Biology, 405(5), 1233-1245. PMid:21146533. http://dx.doi.org/10.1016/j.jmb.2010.12.007.

47. Xu, J., Wang, Z., Yu, L., Wang, J., & Wang, S. (2013). A novel reverse osmosis membrane with regenerable anti-biofouling and chlorine resistant properties. Journal of Membrane Science, 435, 80-91. http://dx.doi.org/10.1016/j.memsci.2013.02.010.

48. Bradford, M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principles of protein dye binding. Analytical Biochemistry, 72(1-2), 248-254. PMid:942051. http://dx.doi.org/10.1016/0003-2697(76)90527-3.

49. Makki, F., & Durance, T. D. (1996). Thermal inactivation of lysozyme as influenced by pH, sucrose and sodium chloride and inactivation and preservative effect in beer. Food Research International, 29(7), 635-645. http://dx.doi.org/10.1016/S0963-9969(96)00074-9.

50. Chen, J.-P., & Chen, Y.-C. (1997). Preparations of immobilized lysozyme with reversibly soluble polymer is hydrolysis of microbial cells. Bioresource Technology, 60(3), 231-237. http://dx.doi.org/10.1016/S0960-8524(97)00031-X.

51. Wang, S.-L., Chen, S.-H., Yen, Y.-H., & Wang, C.-L. (2003). Reversible immobilization of lysozyme via coupling to reversibly soluble polymer. Enzyme and Microbial Technology, 33(5), 643-649. http://dx.doi.org/10.1016/S0141-0229(03)00186-8.

52. Chen, J.-F., Xiao, Q.-G., So, X., & Zou, H.-K. (2008). Comparative study of solid silica nanoparticles and hollow silica nanoparticles for the immobilization of lysozyme. Chemical Engineering Journal, 137(1), 38-44. http://dx.doi.org/10.1016/j.cej.2007.09.012.

53. Ahmad, A., & Salahuddin, A. (1996). Effect of organic solvents on lysozyme-antilysozyme precipitin reaction. Comparative Biochemistry and Physiology. Part C, Pharmacology, Toxicology & Endocrinology, 114(2), 119-121. PMid:8760606. http://dx.doi.org/10.1016/0742-8413(96)00020-5.

54. Castellan, G.(2004). Physical chemistry. 3rd ed. New Delhi: Narosa.

55. Zhang, D.-H., Zhang, Y.-F., Zhi, G.-Y., & Xie, Y.-L. (2011). Effect of hydrophobic/hydrophilic characteristics of magnetic microspheres on the immobilization of BSA. Colloids and Surfaces. B, Biointerfaces, 82(2), 302-306. PMid:20888194. http://dx.doi.org/10.1016/j.colsurfb.2010.09.001.

56. Wangkam, T., Yodmongkol, S., Disrattakit, J., Sutapun, B., Amarit, R., Somboonkaew, A., & Srikhirin, T. (2012). Adsorption of bovine serum albumin (BSA) on polystyrene (PS) and its acid copolymer. Current Applied Physics, 12(1), 44-52. http://dx.doi.org/10.1016/j.cap.2011.04.039.

57. Swain, S. K., & Sarkar, D. (2013). Study of BSA protein adsorption/release on hydroxyapatite nanoparticles. Applied Surface Science, 286, 99-103. http://dx.doi.org/10.1016/j.apsusc.2013.09.027.

58. Lu, Z., Zhang, J., Ma, Y., Song, S., & Gu, W. (2012). Biomimetic mineralization of calcium carbonate/carboxymethylcellulose microspheres for lysozyme immobilization. Materials Science and Engineering C, 32(7), 1982-1987. http://dx.doi.org/10.1016/j.msec.2012.05.027.

59. Lu, A. X., Liao, X. P., Zhou, R. Q., & Shi, B. (2007). Preparation of Fe(III)-immobilized collagen fiber for lysozyme adsorption. Colloids and Surfaces, 301(1-3), 85-93. http://dx.doi.org/10.1016/j.colsurfa.2006.12.027.

60. Kim, J.-H., & Yoon, J.-Y. (2002). Protein adsorption on polymer. In A. T. Hubbard (Ed.), Encyclopedia of surface and colloid science. New York: Marcel Dekker.
588371db7f8c9d0a0c8b4abe polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections