Polímeros: Ciência e Tecnologia
Polímeros: Ciência e Tecnologia
Scientific & Technical Article

Proton conductive membranes based on poly(styrene-co-allyl alcohol) Semi-IPN

Loureiro, Felipe Augusto M.; Marins, Evelyn Serrano de; Anjo, Gullit Diego C. dos; Rocco, Ana Maria; Pereira, Robson Pacheco

Downloads: 0
Views: 694


The optimization of fuel cell materials, particularly polymer membranes, for PEMFC has driven the development of methods and alternatives to achieve systems with more adequate properties to this application. The sulfonation of poly(styrene-co-allyl alcohol) (PSAA), using sulfonating agent:styrene ratios of 2:1, 1:1, 1:2, 1:4, 1:6, 1:8 and 1:10, was previously performed to obtain proton conductive polymer membranes. Most of those membranes exhibited solubility in water with increasing temperature and showed conductivity of approximately 10-5 S cm-1. In order to optimize the PSAA properties, especially decreasing its solubility, semi-IPN (SIPN) membranes are proposed in the present study. These membranes were obtained from the diglycidyl ether of bisphenol A (DGEBA), curing reactions in presence of DDS (4,4-diaminodiphenyl sulfone) and PSAA. Different DGEBA/PSAA weight ratios were employed, varying the PSAA concentration between 9 and 50% and keeping the mass ratio of DGEBA:DDS as 1:1. The samples were characterized by FTIR and by electrochemical impedance spectroscopy. Unperturbed bands of PSAA were observed in the FTIR spectra of membranes, suggesting that chemical integrity of the polymer is maintained during the synthesis. In particular, bands involving C-C stretching (1450 cm-1), C=C (aromatic, ~ 3030 cm-1) and C-H (2818 and 2928 cm-1) were observed, unchanged after the synthesis. The disappearance or reduction of the intensity of the band at 916 cm-1, attributed to the DGEBA epoxy ring, is evidenced for all samples, indicating the epoxy ring opening and the DGEBA crosslinking. Conductivity of H3PO4 doped membranes increases with temperature, reaching 10-4 S cm-1.


IPN, proton conductive membrane, copolymer, electrochemical impedance spectroscopy.


1. Silveira, J.L.; Braga, L.B.; De Souza, A.C.C.; Antunes, J.S.; Zanati, R., Renewable and Sustainable Energy Reviews, 13, p.2525 (2009).

2. Wang, Y., Chen, K. S., Mishler, J., S. Cho, C., Adroher, X. C., Applied Energy, 88, p.981 (2011).

3. Blanco, L. T., Loureiro, F. A. M., Pereira, R. P., Rocco, A.M., ECS Transactions, 45, p.21 (2013).

4. Carrete, L.; Friedrich, K.A.; Stimming, U., Fuel Cells, 1, p. 5 (2001).

5. Smitha, B.; Sridar, S.; Khan, A. A., Journal of Membrane Science, 259, p.10 (2005).

6. Haubold, H.-G.; Vad, T.; Jungbluth, H.; Hiller, P., Electrochimica Acta, 46, p.1559 (2001).

7. Chikh, L.; Delhorbe, V.; Fichet, O., Journal of Membrane Science, 368, p.1 (2011).

8. Souzy, R.; Ameduri, B., Progress in Polymer Science, 30, p.644 (2005).

9. Chuang, S.W.; Hsu, S.L.C.; Yang, M.L., European Polymer Journal, 44, p.2202 (2008).

10. Moszczynski, P.; Kalita, M.; Parzuchowsky, P.; Siekierski, M.; Wieczorek, W., Journal Power Sources, 173, p.648 (2007).

11. Chikh, L., V. Delhorbe, Fichet, O., J. Membr. Sci., 368, p. 1 (2011).

12. Zhang, X.H.; Chen, S.; Min, Y.Q.; Qi, G.R., Polymer, 47, p.1785 (2006).

13. Sanches-Cortes, S.; Berenguel, R.M.; Madejón, A.; Pérez-Méndez, M., Biomacromolecules, 3, p.655 (2002).

14. Okazali, Y.; Nagaoka, S.; Kawakami, H., Journal of Polymer Science: Part B: Polymer Physics, 45, p.1325 (2007).

15. Silva, A. L. A.; Takase, I. ; Pereira, R. P.; Rocco, A. M., European Polymer Journal, 44, p.1462 (2008).

16. Kreuer, K.D., Journal of Membrane Science, 185, p.29 (2001).

17. Zawodzinski, T.A.; Derouin, C.; Radzinski, S.; Sherman, R.J.; Smith, V.T.; Springer, T.E.; Gottesfeld, S., Journal of Electrochemical Society, 140, p.1041 (1993).

18. Ren, X.M.; Gottesfeld, S.J., Electrochemical Society, 148, p.87 (2001).
588371ad7f8c9d0a0c8b49f3 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections