Polímeros: Ciência e Tecnologia
https://www.revistapolimeros.org.br/article/doi/10.1590/S0104-14282010005000013
Polímeros: Ciência e Tecnologia
Scientific & Technical Article

Porcine Skin as a Source of Biodegradable Matrices: Alkaline Treatment and Glutaraldehyde Crosslinking

Rodrigues, Fabiana T.; Martins, Virginia C. A.; Plepis, Ana M. G.

Downloads: 0
Views: 587

Abstract

In this work, the modifications promoted by alkaline hydrolysis and glutaraldehyde (GA) crosslinking on type I collagen found in porcine skin have been studied. Collagen matrices were obtained from the alkaline hydrolysis of porcine skin, with subsequent GA crosslinking in different concentrations and reaction times. The elastin content determination showed that independent of the treatment, elastin was present in the matrices. Results obtained from in vitro trypsin degradation indicated that with the increase of GA concentration and reaction time, the degradation rate decreased. From thermogravimetry and differential scanning calorimetry analysis it can be observed that the collagen in the matrices becomes more resistant to thermal degradation as a consequence of the increasing crosslink degree. Scanning electron microscopy analysis indicated that after the GA crosslinking, collagen fibers become more organized and well-defined. Therefore, the preparations of porcine skin matrices with different degradation rates, which can be used in soft tissue reconstruction, are viable.

Keywords

Porcine skin, collagen, glutaraldehyde crosslinking.

References

1. Middelkoop, E.; Van Den Bogaerdt, A. J.; Lame, E. N.; Hoekstra, M. J.; Brandsma, K. & Ulrich, M. M. W. - Biomaterials, 25, p. 1559 (2004).

2. Hoyama, E.; Schellini, S. A.; Pellizon, C. H.; Marques, M. E. A.; Padovani, C. R. & Rossa, R. - An. Bras. Dermatol., 80, p. 369 (2005).

3. Pereira, C.; Gold, W. & Herndon, D. - J. Biomater. Appl., 22, p. 101 (2007).

4. Shaikh, F. M.; Giri, S. K.; Durrani, S.; Waldron, D. & Grace, P.A. - World J. Surg., 31, p. 1966 (2007).

5. Ruszczak, Z. - Adv. Drug Del. Rev., 55, p. 1595 (2003).

6. Prasertsung, I.; Kanokpanont, S.; Bunaprasert, T.; Thanakit, V. & Damrongsakkul, S. - J. Biomed. Mater. Res. B Appl. Biomater., 85, p. 210 (2008).

7. Bet, M. R.; Goissis, G. & Lacerda, C. A. - Biomacromolecules, 2, p. 1074 (2001).

8. Goissis, G.; Marcantonio Junior, E.; Marcantônio, R. A. C.; Lia, R. C. C.; Cancian, D. C. J. & Carvalho, W. M. - Biomaterials, 20, p. 27 (1999).

9. Rocha, L. B.; Goissis, G. & Rossi, M. A. - Biomaterials, 23, p. 449 (2002).

10. Badylak, S. F.; Freytes, D. O. & Gilbert, T. W. - Acta Biomater., 5, p. 1 (2009).

11. Forti, F. L.; Goissis, G. & Plepis, A. M. G. - J. Biomater. Appl., 20, p. 267 (2006).

12. Goissis, G.; Braile, D. M. & Giglioti, A. F. - Polímeros, 9, p. 92 (1999).

13. Jarman-Smith, M. L.; Bodamyali, T.; Stevens, C.; Howell, J. A.; Horrocks, M. & Chaudhuri, J. B. - J. Mater. Sci. Mater. Med., 15, p. 925 (2004).

14. Liang, H. C.; Chang, Y.; Hsu, C. K.; Lee, M. H. & Sung, H. W. - Biomaterials, 25, p. 3541 (2004).

15. Sheu, M. T.; Huang, J. C.; Yeh, G. C. & Ho, H. O. - Biomaterials, 22, p. 1713 (2001).

16. Fathima, N. N.; Madhan, B.; Rao, J. R.; Nair, B. U. & Ramasami, T. - Int. J. Biol. Macromol., 34, p. 241 (2004).

17. Bet, M. R.; Goissis, G.; Vargas, S. & Selistre de Araújo, H. S. - Biomaterials, 24, p. 131 (2003).

18. Cross, H. R.; Smith, G. C. & Carpenter, Z. L. - J. Agric. Food Chem., 21, p. 716 (1973).

19. Newton, D.; Mahajan, R.; Ayres, C.; Bowman, J. R., Bowlin, G. L. & Simpson, D. G. - Acta Biomater., 5, p. 518 (2009).

20. Saito, H.; Murabayashi, S.; Mitamura, Y. & Taguchi, T. - J. Mater. Sci. Mater. Med., 19, p. 1297 (2008).

21. Langdon, S. E.; Chernecky, R.; Pereira, C. A.; Abdulla, D. & Lee, J. M. - Biomaterials, 20, p. 137 (1999).
5883715b7f8c9d0a0c8b486d polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections