Polímeros: Ciência e Tecnologia
https://www.revistapolimeros.org.br/article/doi/10.1590/S0104-14282007000300009
Polímeros: Ciência e Tecnologia
Scientific & Technical Article

Characterization of an Electrospinning Process using Different PAN/DMF Concentrations

Ramos, Idalia; Furlan, Rogerio; Mendes, Luiz T. F.; Morimoto, Nilton I.; Silva, Ana N. R. da; Gomes, Demetrius S.

Downloads: 0
Views: 961

Abstract

We performed an extensive characterization of an electrospinning process to evaluate how the process parameters and precursor solution characteristics affect the fibers morphology. The work was conducted using precursor solutions with different concentrations of polyacrylonitrile (PAN) diluted in a fixed amount of N,N dimethylformamide (DMF). Fibers obtained with this process can find important applications in the field of nanosensors. The characteristics of the electrospun fibers were analyzed as a function of the solution viscosity, applied voltage and distance between the needle tip (positive electrode) and the collector plate (grounded electrode). The electrical current was monitored during the deposition process and its behavior was correlated with the characteristics of the fibers obtained. Our results demonstrate that the diameter of the fibers increases with increasing viscosity and applied voltage. The number of deposited fibers also increases with the applied voltage. Also, viscosity and applied voltage strongly affect the shape, length and morphology of the fibers. Of particular interest, we demonstrated that by monitoring the electrical current it is possible to control the fibers morphology and bead concentration. The distance between tip and collector plate determines the way the fibers arrive on the collector plate. A main contribution of this study was the definition of conditions to controllably obtain fibers that are smooth and that present diameters in the range between 140 and 300 nm.

Keywords

Nanofibers (A), electrospinning (E), nanostructure (A)

References



1. Huang, Z.-M.; Zhang, Y.-Z.; Kotaki, M. & Ramakrishna, S. - “A review on polymer nanofibers by electrospinning and their applications in nanocomposites”, Composite Science and Technology, p. 2223-2253 (2003).

2.Wang, Y.; Furlan, R.; Ramos, I. & Jorge J. Santiago-Aviles - “Synthesis and characterization of micro/nanoscopic Pb(Zr0.52Ti0.48)O3 fibers by electrospinning”, Applied Physics A, 78, 7, p.1043-1047 (2004).

3. Da Silva, A. N. R.; Furlan, R.; Ramos, I.; Da Silva, M. L. P.; Fachini, E. & Santiago-Aviles, J. J. - “Characterization of electrospinning process using blends of polyacrylonitrile and carbon particles”, 18th Symposium on Microelectronics Technology and Devices, SBMicro 2003, Sao Paulo, Brazil, September 8-11, Eletrochemical Society Proceedings Volume 2003-09, 2003, p. 284-291

4. Kameoka, J. & Craighead, H. G. - “Fabrication of oriented polymeric nanofibers on planar surfaces by electrospinning”, Applied Physics Letters, 83, 2, p.371- 373 (2003).

5. Li, D.; Wang, Y. & Xia, Y. - “Electrospinning of polymeric and ceramic nanofibers as uniaxially aligned arrays”, Nano Letters, 3, 8, p.1167-1171, 2003.

6. Doshi, J. & Reneker, D. H. - “Electrospinning process and Aplications of Electrospun Fibers”; J. Electrostatics, 35, p.151-160 (1995).

7. MacDarmid, A. G. et al. - “Electrostatically-generated nanofibers of electronic polymers”; Synthetic Metals, 119, p.27-30 (2001).

8. Jaeger, R.; Bergshoef, M. M.; Batle, C. M.; Schönher, H. & Vaneso, G. J. - “Electrospinning of Ultra Thin Polymer Fiber”; Macromol. Symp, 127, p.141-150, (1998).

9. Reneker, D. H.; Yarin, A.L.; Fong, H. & Koombhongse, S. - “Bending Instability of Eectrically charged liquid jets of polymer solutions in electrospinning”; Journal of Applied Physics, 87, 9, p.4531-4547 (2000).

10. Drew, C.; Liu, X.; Ziegler, D.; Wang, X.; Bruno, F. F.; Whitten, J.; Samuelson, L. A. & Kumar, J. - “Metal Oxide Coated Polymer Nanofibers”; NanoLetters, 3, 2, p.143-147 (2003).

11.Wang, Y.; Santiago-Aviles, J. J.; Furlan, R. & Ramos, I. - “Pyrolysis temperature and time dependence of electrical conductivity evolution for electrostatically generated carbon nanofibers”, IEEE Transactions on Nanotechnology, 2, 1, p.39-43 (2003).

12.Wang, Y.; Ramos, I.; Furlan, R. & Santiago-Avilés, J. J. - “Electronic Transport Properties of Incipient Graphi tic Domains Formation in PAN Derived Carbon Nano Fibers”, IEEE Transactions on Nanotechnology, 3, 1, p.80-85 (2004).

13. Mrozowski, S. - “Specific-heat anomalies and spin-spin interactions in carbons - review”, J. Low Temp. Phys., 35, 3/4, p.231-297 (1979).

14. Hu, J.; Odom, T. W. & Lieber, C. M. - “Chemistry and physics in one dimension: synthesis and properties of nanowires and nanotubes,” Acc. Chem. Res. 32, p.435- 445 (1999).

15. Duan, X.; Huang, Y.; Wang, J. & Lieber, C. M. - “Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices,” Nature, 409, p.66-69, jan. (2001).

16. Deitzel, J. M.; Kleinmeyer, J.; Harris, D. & Beck Tan, N.C. - “The effect of processing variables on the morphology of electrospun nanofibers and textiles”; Polymer 42, p.261-272 (2001).

17. Fong, H.; Chun, I. D. & Reneker, H. - “Beaded nanofibers formed during electrospinning”, Polymer 40, p.4585-4592 (1999).
5883711a7f8c9d0a0c8b4720 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections