Polímeros: Ciência e Tecnologia
Polímeros: Ciência e Tecnologia
Scientific & Technical Article

Isolation of whiskers from natural sources and their dispersed in a non-aqueous medium

Vestena, Mauro; Gross, Idejan Padilha; Muller, Carmen Maria Olivera; Pires, Alfredo Tibúrcio Nunes

Downloads: 0
Views: 379


Whiskers have been used as a nanomaterial dispersed in polymer matrices to modify the microscopic and macroscopic properties of the polymer. These nanomaterials can be isolated from cellulose, one of the most abundant natural renewable sources of biodegradable polymer. In this study, whiskers were isolated from sugarcane bagasse and corn cob straw fibers. Initially, the cellulose fiber was treated through an alkaline/oxidative process followed by acid hydrolysis. Dimethylformamide and dimethyl sulfoxide were used to replace the aqueous medium for the dispersion of the whiskers. For the solvent exchange, dimethylformamide or dimethyl sulfoxide was added to the aqueous dispersion and the water was then removed by fractional distillation. FTIR, TGA, XRD, TEM, Zeta and DLS techniques were used to evaluate the efficiency of the isolation process as well as the morphology and dimensions of the whiskers. The dimensions of the whiskers are comparable with values reported in the literature, maintaining the uniformity and homogeneity in both aqueous and non-aqueous solvents.


whiskers, cellulose bleaching, agricultural waste.


1. Teixeira, E. de M., Bondancia, T. J., Teodoro, K. B. R., Corrêa, A. C., Marconcini, J. M., & Mattoso, L. H. C. (2011). Sugarcane bagasse whiskers: extraction and characterizations. Industrial Crops and Products, 33(1), 63-66. http://dx.doi.org/10.1016/j.indcrop.2010.08.009.

2. Vallejos, M. E., Felissia, F. E., Kruyeniski, J., & Area, M. C. (2015). Kinetic study of the extraction of hemicellulosic carbohydrates from sugarcane bagasse by hot water treatment. Industrial Crops and Products, 67, 1-6. http://dx.doi.org/10.1016/j.indcrop.2014.12.058.

3. Rocha, G. J. de M., Nascimento, V. M., Gonçalves, A. R., Silva, V. F. N., & Martín, C. (2015). Influence of mixed sugarcane bagasse samples evaluated by elemental and physical-chemical composition. Industrial Crops and Products, 64, 52-58. http://dx.doi.org/10.1016/j.indcrop.2014.11.003.

4. Dermibás, A. (2003). Relationships between lignin contents and fixed carbon contents of biomass samples. Energy Conversion and Management, 44(9), 1481-1486. http://dx.doi.org/10.1016/S0196-8904(02)00168-1.

5. Fu, S.-F., Wang, F., Yuan, X.-Z., Yang, Z.-M., Luo, S.-J., Wang, C.-S., & Guo, R.-B. (2015). The thermophilic (55°C) microaerobic pretreatment of corn straw for anaerobic digestion. Bioresource Technology, 175, 203-208. PMid:25459823. http://dx.doi.org/10.1016/j.biortech.2014.10.072.

6. Chundawat, S. P. S., Venkatesh, B., & Dale, B. E. (2007). Effect of particle size based separation of milled corn stover on AFEX pretreatment and enzymatic digestibility. Biotechnology and Bioengineering, 96(2), 219-231. PMid:16903002. http://dx.doi.org/10.1002/bit.21132.

7. Habibi, Y., Lucia, L. A., & Rojas, O. J. (2010). Cellulose nanocrystals: chemistry, self-assembly, and applications. Chemical Reviews, 110(6), 3479-3500. PMid:20201500. http://dx.doi.org/10.1021/cr900339w.

8. Oksman, K., Mathew, A. P., Bondeson, D., & Kvien, I. (2006). Manufacturing process of cellulose whiskers/polylactic acid nanocomposites. Composites Science and Technology, 66(15), 2776-2784. http://dx.doi.org/10.1016/j.compscitech.2006.03.002.

9. Lee, Y.-J., Chung, C.-H., & Day, D. F. (2009). Sugarcane bagasse oxidation using a combination of hypochlorite and peroxide. Bioresource Technology, 100(2), 935-941. PMid:18693013. http://dx.doi.org/10.1016/j.biortech.2008.06.043.

10. Mandal, A., & Chakrabarty, D. (2011). Isolation of nanocellulose from waste sugarcane bagasse (SCB) and its characterization. Carbohydrate Polymers, 86(3), 1291-1299. http://dx.doi.org/10.1016/j.carbpol.2011.06.030.

11. Sun, J. X., Sun, X. F., Zhao, H., & Sun, R. C. (2004). Isolation and characterization of cellulose from sugarcane bagasse. Polymer Degradation & Stability, 84(2), 331-339. http://dx.doi.org/10.1016/j.polymdegradstab.2004.02.008.

12. Rosa, S. M. L., Rehman, N., Miranda, M. I. G., Nachtigall, S. M. B., & Bica, C. I. D. (2012). Chlorine-free extraction of cellulose from rice husk and whisker isolation. Carbohydrate Polymers, 87(2), 1131-1138. http://dx.doi.org/10.1016/j.carbpol.2011.08.084.

13. Zhao, X.-B., Wang, L., & Liu, D.-H. (2008). Peracetic acid pretreatment of sugarcane bagasse for enzymatic hydrolysis: a continued work. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 83(6), 950-956. http://dx.doi.org/10.1002/jctb.1889.

14. Ramadoss, G., & Muthukumar, K. (2015). Influence of dual salt on the pretreatment of sugarcane bagasse with hydrogen peroxide for bioethanol production. Chemical Engineering Journal, 260, 178-187. http://dx.doi.org/10.1016/j.cej.2014.08.006.

15. Moon, R. J., Martini, A., Nairn, J., Simonsen, J., & Youngblood, J. (2011). Cellulose nanomaterials review: structure, properties and nanocomposites. Chemical Society Reviews, 40(7), 3941-3994. PMid:21566801. http://dx.doi.org/10.1039/c0cs00108b.

16. Rhim, J.-W., Park, H.-M., & Ha, C.-S. (2013). Bio-nanocomposites for food packaging applications. Progress in Polymer Science, 38(10-11), 1629-1652. http://dx.doi.org/10.1016/j.progpolymsci.2013.05.008.

17. Reddy, M. M., Vivekanandhan, S., Misra, M., Bhatia, S. K., & Mohanty, A. K. (2013). Biobased plastics and bionanocomposites: Current status and future opportunities. Progress in Polymer Science, 38(10-11), 1653-1689. http://dx.doi.org/10.1016/j.progpolymsci.2013.05.006.

18. Samir, M. A. S. A., Alloin, F., Sanchez, J.-Y., & Dufresne, A. (2005). Nanocomposite polymer electrolytes based on poly(oxyethylene) and cellulose whiskers. Polímeros: Ciência e Tecnologia, 15(2), 109-113. http://dx.doi.org/10.1590/S0104-14282005000200009.

19. Petersson, L., Kvien, I., & Oksman, K. (2007). Structure and thermal properties of poly(lactic acid)/cellulose whiskers nanocomposite materials. Composites Science and Technology, 67(11-12), 2535-2544. http://dx.doi.org/10.1016/j.compscitech.2006.12.012.

20. Kaboorani, A., & Riedl, B. (2015). Surface modification of cellulose nanocrystals (CNC) by a cationic surfactant. Industrial Crops and Products, 65, 45-55. http://dx.doi.org/10.1016/j.indcrop.2014.11.027.

21. Bondeson, D., & Oksman, K. (2007). Polylactic acid/cellulose whisker nanocomposites modified by polyvinyl alcohol. Composites. Part A, Applied Science and Manufacturing, 38(12), 2486-2492. http://dx.doi.org/10.1016/j.compositesa.2007.08.001.

22. Araki, J., Wada, M., & Kuga, S. (2001). Steric stabilization of a cellulose microcrystal suspension by poly(ethylene glycol) grafting. Langmuir, 17(1), 21-27. http://dx.doi.org/10.1021/la001070m.

23. Fortunati, E., Peltzer, M., Armentano, I., Torre, L., Jiménez, A., & Kenny, J. M. (2012). Effects of modified cellulose nanocrystals on the barrier and migration properties of PLA nano-biocomposites. Carbohydrate Polymers, 90(2), 948-956. PMid:22840025. http://dx.doi.org/10.1016/j.carbpol.2012.06.025.

24. Dufresne, A., & Belgacem, M. N. (2013). Cellulose-reinforced composites: from micro-to nanoscale. Polímeros: Ciência e Tecnologia, 23(3), 277-286. http://dx.doi.org/10.4322/polimeros.2010.01.001.

25. Yu, H.-Y., Qin, Z.-Y., Liu, Y.-N., Chen, L., Liu, N., & Zhou, Z. (2012). Simultaneous improvement of mechanical properties and thermal stability of bacterial polyester by cellulose nanocrystals. Carbohydrate Polymers, 89(3), 971-978. PMid:24750888. http://dx.doi.org/10.1016/j.carbpol.2012.04.053.

26. Pracella, M., Haque, M. M. U., & Puglia, D. (2014). Morphology and properties tuning of PLA/cellulose nanocrystals bio-nanocomposites by means of reactive functionalization and blending with PVAc. Polymer, 55(16), 3720-3728. http://dx.doi.org/10.1016/j.polymer.2014.06.071.

27. Technical Association of the Pulp and Paper Industry – TAPPI. (1999). Method T222 om-88. Peachtree Corners: TAPPI.

28. Technical Association of the Pulp and Paper Industry – TAPPI. (1993). Method T211 om-93. Peachtree Corners: TAPPI.

29. Technical Association of the Pulp and Paper Industry – TAPPI. (1989). Method T204 om-88. Peachtree Corners: TAPPI.

30. Technical Association of the Pulp and Paper Industry – TAPPI. (1991). Method T19m-54. Peachtree Corners: TAPPI.

31. Baldinger, T., Moosbauer, J., & Sixta, H. (2000). Supermolecular structure of cellulosic materials by Fourier Transform Infrared Spectroscopy (FT-IR) calibrated by WAXS and 13C NMR. Lenzing Berichte, 79, 15-17.

32. Rumyantseva, Y. I., Zhbankov, R. G., Marhevka, R., & Rataiczakb, H. (1994). IR spectra and structure of alkaline lignin and thiolignin. Journal of Applied Spectroscopy, 61, 5-6.

33. Wang, G., Li, W., Li, B., & Chen, H. (2008). TG study on pyrolysis of biomass and its three components under syngas. Fuel, 87(4-5), 552-558. http://dx.doi.org/10.1016/j.fuel.2007.02.032.

34. Ford, E. N. J., Mendon, S. K., Thames, S. F., & Rawlins, J. W. (2010). X-ray Diffraction of cotton treated with neutralized vegetable oil-based macromolecular crosslinkers. Journal of Engineered Fibers and Fabrics, 5(1), 10-20.

35. Borysiak, S., & Doczekalska, B. (2005). “X-ray diffraction study of pine wood treated with NaOH. Fibres & Textiles in Eastern Europe, 13(53), 87-89.

36. Correa, A. C. (2010). Preparação de nanofibras de celulose a partir de fibras de curauá para desenvolvimento de nanocompósitos poliméricos com EVA (Doctoral thesis). Universidade Federal de São Carlos, São Carlos.

37. Taipina, M. O. (2012). Nanocristais de celulose: obtenção, caracterização e modificação de superficie (Master’s dissertation). Universidade Estadual de Campinas, Campinas.

38. Bondeson, D., Mathew, A., & Oksman, K. (2006). Optimization of the isolation of nanocrystals from microcristalline cellulose by acid hydrolysis. Cellulose, 13, 171. http:// doi:10.1016/j.compositesa.2007.08.001.

39. Dong, X. M., Revol, J.-F., & Gray, D. G. (1998). Effect of microcrystallite preparation conditions on the formation of colloid crystals of cellulose. Cellulose (London, England), 5(1), 19-32. http://dx.doi.org/10.1023/A:1009260511939.

40. Mathew, A. P., Oksman, K., Karim, Z., Liu, P., Khan, S. A., & Naseri, N. (2014). Process scale up and characterization of wood cellulose nanocrystals hydrolysed using bioethanol pilot plant. Industrial Crops and Products, 58, 212-219. http://dx.doi.org/10.1016/j.indcrop.2014.04.035.

41. Teixeira, E. M., Oliveira, C. R., Mattoso, L. H. C., Corrêa, A. C., & Paladin, P. D. (2010). Nanofibras de algodão obtidas sob diferentes condições de hidrólise ácida. Polímeros: Ciência e Tecnologia, 20(4), 264-268. http://dx.doi.org/10.1590/S0104-14282010005000046.

42. Teodoro, K. B. R., Teixeira, E. M., Corrêa, A. C., de Campos, A., Marconcini, J. M., & Mattoso, L. H. C. (2011). Whiskers de fibra de sisal obtidos sob diferentes condições de hidrólise ácida: efeito do tempo e da temperatura de extração. Polímeros: Ciência e Tecnologia, 21(4), 280-285. http://dx.doi.org/10.1590/S0104-14282011005000048.

43. Greenwood, R. (2003). Review of the measurement of zeta potentials in concentrated aqueous suspensions using electroacoustics. Advances in Colloid and Interface Science, 106(1-3), 55-81. PMid:14672842. http://dx.doi.org/10.1016/S0001-8686(03)00105-2.

44. Lima, M. M. S., Wong, J. T., Paillet, M., Borsali, R., & Pecora, R. (2003). Translational and rotational dynamics of rodlike cellulose whiskers. Langmuir, 19(1), 24-29. http://dx.doi.org/10.1021/la020475z.

45. Braun, B., Dorgan, J. R., & Chandler, J. P. (2008). Cellulosic nanowhiskers: theory and application of light scattering from polydisperse spheroids in the rayleigh−gans−debye regime. Biomacromolecules, 9(4), 1255-1263. PMid:18357993. http://dx.doi.org/10.1021/bm7013137.

46. Viet, D., Beck-Candanedo, S., & Gray, D. G. (2007). Dispersion of cellulose nanocrystals in polar organic solvents. Cellulose (London, England), 14(2), 109-113. http://dx.doi.org/10.1007/s10570-006-9093-9.

47. Kamal, M. R., & Khoshkava, V. (2015). Effect of cellulose nanocrystals (CNC) on rheological and mechanical properties and crystallization behavior of PLA/CNC nanocomposites. Carbohydrate Polymers, 123, 105-114. PMid:25843840. http://dx.doi.org/10.1016/j.carbpol.2015.01.012.
588371dd7f8c9d0a0c8b4ac6 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections