Polímeros: Ciência e Tecnologia
https://www.revistapolimeros.org.br/article/doi/10.1590/0104-1428.2344
Polímeros: Ciência e Tecnologia
Scientific & Technical Article

Waterborne hyperbranched alkyd-acrylic resin obtained by miniemulsion polymerization

Murillo, Edwin; López, Betty

Downloads: 0
Views: 1068

Abstract

Four waterborne hyperbranched alkyd-acrylic resins (HBRAA) were synthesized by miniemulsion polymerization from a hyperbranched alkyd resin (HBR), methyl methacrylate (MMA), butyl acrylate (BA) and acrylic acid (AA), by using benzoyl peroxide (BPO) and ammonium persulfate (AP) as initiators. The reaction between HBR and acrylic monomers was evidenced by differential scanning calorimetric (DSC), nuclear magnetic resonance (NMR) and gel permeation chromatography (GPC). The conversion percentage, glass transition temperature (Tg), content of acrylic polymer (determined by soxhlet extraction) and molecular weight increased with the content of acrylic monomers used in the synthesis. The main structure formed during the synthesis was the HBRAA. The analysis by dynamic light scattering (DLS) showed that the particle size distribution of HBRAA2, HBRAA3 and HBRAA4 resins were mainly monomodal. The film properties (gloss, flexibility, adhesion and drying time) of the HBRAA were good.

Keywords

hyperbranched polymers, miniemulsion polymerization, alkyd-acrylic resins, properties.

References

1. Bat, E., Gunduz, G., Kisakurek, D., & Akhmedov, I. M. (2006). Synthesis and characterization of hyperbranched and air drying fatty acid based resins. Progress in Organic Coatings, 55(4), 330-336. http://dx.doi.org/10.1016/j.porgcoat.2006.01.005.

2. Nabuurs, T., Baijards, R. A., & German, A. L. (1996). Alkyd-acrylic hybrid systems for use as binders in waterborne paints. Progress in Organic Coatings, 27(1-4), 163-172. http://dx.doi.org/10.1016/0300-9440(95)00533-1.

3. Murillo, E. A., Vallejo, P. P., & López, B. L. (2010). Synthesis and characterization of hyperbranched alkyd resins based on tall oil fatty acids. Progress in Organic Coatings, 69(3), 235-240. http://dx.doi.org/10.1016/j.porgcoat.2010.04.018.

4. Saravari, O., Phapant, P., & Pimpan, V. (2005). Synthesis of water-reducible acrylic–alkyd resins based on modified palm oil. Journal of Applied Polymer Science, 96(4), 1170-1175. http://dx.doi.org/10.1002/app.21009.

5. Murillo, E. A., López, B. L., & Brostow, W. (2012). Thermal, hydrolytic, anticorrosive, and tribological properties of alkyd-silicone hyperbranched resins with high solid content. Journal of Applied Polymer Science, 124(5), 3591-3599. http://dx.doi.org/10.1002/app.34611.

6. Murillo, E. A., & López, B. L. (2011). Novel waterborne hyperbranched acrylated-maleinized alkyd resins. Progress in Organic Coatings, 72(4), 731-738. http://dx.doi.org/10.1016/j.porgcoat.2011.08.004.

7. Guyot, A., Landfester, K., Schork, F. J., & Wang, Ch. (2007). Hybrid polymer latexes. Progress in Polymer Science, 32(12), 1439-1461. http://dx.doi.org/10.1016/j.progpolymsci.2007.07.003.

8. Murillo, E. A., López, B. L., & Brostow, W. (2011). Synthesis and characterization of novel alkyd–silicone hyperbranched nanoresins with high solid contents. Progress in Organic Coatings, 72(3), 292-298. http://dx.doi.org/10.1016/j.porgcoat.2011.04.019.

9. Murillo, E. A., López, B. L., & Hess, M. (2004). Synthesis and characterization of a pressure-sensitive adhesive based on an isobutyl acrylate / 2-ethylhexyl acrylate copolymer. e-polymer, 28, 1-10. http://dx.doi.org/10.1515/epoly.2004.4.1.288.

10. Wang, C., Chu, F., Graillat, C., Guyot, A., Gauthier, C., & Chapel, J. P. (2005). Hybrid polymer latexes: acrylics–polyurethane from miniemulsion polymerization: properties of hybrid latexes versus blends. Polymer, 46(4), 1113-1124. http://dx.doi.org/10.1016/j.polymer.2004.11.051.

11. Murillo, E. A., & López, B. L. (2006). Study of the impact resistance of physically and dynamically vulcanized mixtures of PP/EPDM. Macromolecular Symposia, 242(1), 131-139. http://dx.doi.org/10.1002/masy.200651020.

12. Silber, S., Reuter, E., Stüttgen, A., & Albrecht, G. (2002). New concepts for the synthesis of wetting and dispersing additives for water-based systems. Progress in Organic Coatings, 45(2-3), 259-266. http://dx.doi.org/10.1016/S0300-9440(02)00064-4.

13. Tsavalas, J., Luo, Y., Hudda, L., & Schork, F. (2003). Limiting conversion phenomenon in hybrid miniemulsion polymerization. Polymer Reaction Engineering, 11(3), 277-304. http://dx.doi.org/10.1081/PRE-120023904.

14. Tsavalas, J., Gooch, J., & Schork, F. J. (2000). Water-based crosslinkable coatings via miniemulsion polymerization of acrylic monomers in the presence of unsaturated polyester resin. Journal of Applied Polymer Science, 75(7), 916-927. http://dx.doi.org/10.1002/(SICI)1097-4628(20000214)75:7<916::AID-APP8>3.0.CO;2-Z.

15. Van Hamersveld, E. M. S., Van Es, G. S., German, A., Cuperus, F., Weissenborn, P., & Hellgren, A. (1999). Oil-acrylic hybrid latexes as binders for waterborne coatings. Progress in Organic Coatings, 35(1-4), 235-246. http://dx.doi.org/10.1016/S0300-9440(99)00040-5.

16. Lindeboom, J. (1998). Air-drying high solids alkyd pants for decorative coatings. Progress in Organic Coatings, 34(1-4), 147-151. http://dx.doi.org/10.1016/S0300-9440(98)00034-4.

17. Wu, X., Schork, F., & Gooch, J. (1999). Hybrid miniemulsion polymerization of acrylic/alkyd systems and characterization of the resulting polymers. Journal of Polymer Science. Part A, Polymer Chemistry, 37(22), 4159-4168. http://dx.doi.org/10.1002/(SICI)1099-0518(19991115)37:22<4159::AID-POLA15>3.0.CO;2-N.

18. Hudda, L., Tsavalas, J. G., & Schork, F. J. (2005). Simulation studies on the origin of the limiting conversion phenomenon in hybrid miniemulsion polymerization. Polymer, 46(4), 993-1001. http://dx.doi.org/10.1016/j.polymer.2004.11.035.

19. Wang, Q., Fu, S., & Yu, T. (1994). Emulsion polymerization. Progress in Polymer Science, 19(4), 703-753. http://dx.doi.org/10.1016/0079-6700(94)90031-0.

20. Jowkar-Deriss, M., & Karlsson, O. J. (2004). Morphologies and droplet sizes of alkyd–acrylic hybrids with high solids content. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 245(1-3), 115-125. http://dx.doi.org/10.1016/j.colsurfa.2004.07.003.

21. Quintero, C., Mendon, S. K., Smith, O. W., & Thames, S. F. (2006). Miniemulsion polymerization of vegetable oil macromonomers. Progress in Organic Coatings, 57(3), 195-201. http://dx.doi.org/10.1016/j.porgcoat.2006.08.011.

22. Heiskanen, N., Jämsä, S., Paajanen, L., & Koskimies, S. (2010). Synthesis and performance of alkyd-acrylic hybrid binders. Progress in Organic Coatings, 67(3), 329-338. http://dx.doi.org/10.1016/j.porgcoat.2009.10.025.

23. Dziczkowski, J., Dudipala, V., & Soucek, M. D. (2012). Grafting sites of acrylic mixed monomers onto unsaturated fatty acids: Part 2. Progress in Organic Coatings, 73(4), 308-320. http://dx.doi.org/10.1016/j.porgcoat.2010.12.006.

24. Dziczkowski, J., Chatterjee, U., & Soucek, M. D. (2012). Route to co-acrylic modified alkyd resins via a controlled polymerization technique. Progress in Organic Coatings, 73(4), 355-365. http://dx.doi.org/10.1016/j.porgcoat.2011.03.003.

25. Elrebii, M., Mabrouk, A. B., & Boufi, S. (2014). Synthesis and properties of hybrid alkyd–acrylic dispersions and their use in VOC-free waterborne coatings. Progress in Organic Coatings, 77(4), 757-764. http://dx.doi.org/10.1016/j.porgcoat.2013.12.016.

26. Tsavalas, J. G., Luo, Y., & Schork, F. J. (2003). Grafting mechanisms in hybrid miniemulsion polymerization. Journal of Applied Polymer Science, 87(11), 1825-1836. http://dx.doi.org/10.1002/app.11916.

27. Murillo, E. A., Vallejo, P. P., & López, B. L. (2011). Effect of tall oil fatty acids content on the properties of novel hyperbranched alkyd resins. Journal of Applied Polymer Science, 120(6), 3151-3158. http://dx.doi.org/10.1002/app.33502.

28. Wang, S. T., Schork, F. J., Poehlein, G. W., & Gooch, J. W. (1996). Emulsion and miniemulsion copolymerization of acrylic monomers in the presence of alkyd resin. Journal of Applied Polymer Science, 60(12), 2069-2076. http://dx.doi.org/10.1002/(SICI)1097-4628(19960620)60:12<2069::AID-APP4>3.0.CO;2-K.

29. Schork, F. J., Luo, Y., Smulders, W., Russum, J. P., Butte, A., & Fontenot, K. (2005). Miniemulsion Polymerization. Advances in Polymer Science, 175, 129-255. http://dx.doi.org/10.1007/b100115.

30. Schork, F. J., Poehlein, G. W., Wang, S., Reimers, J., Rodrigues, J., & Samer, C. (1999). Miniemulsion polymerization. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 153(1-3), 39-45. http://dx.doi.org/10.1016/S0927-7757(98)00424-5.

31. Landfester, K., Schork, F. J., & Kusuma, V. A. (2003). Particle size distribution in mini-emulsion polymerization. Comptes Rendus. Chimie, 6(11-12), 1337-1342. http://dx.doi.org/10.1016/j.crci.2003.07.019.

32. Merkel, M. P., Dimonie, V. L., El-Aasser, M. S., & Vanderhoff, J. W. (1987). Process parameters and their effect on grafting reactions in core/shell latexes. Journal of Polymer Science. Part A, Polymer Chemistry, 25(7), 1755-1767. http://dx.doi.org/10.1002/pola.1987.080250705.

33. Matsumoto, A., Kodama, K., Aota, H., & Capek, I. (1999). Kinetics of emulsion crosslinking polymerization and copolymerization of allyl methacrylate. European Polymer Journal, 35(8), 1509-1517. http://dx.doi.org/10.1016/S0014-3057(98)00216-X.

34. Esser, R. J., Devona, J. E., Setzke, D. E., & Wagemans, L. (1999). Water based crosslinkable surface coatings. Progress in Organic Coatings, 36(1-2), 45-52. http://dx.doi.org/10.1016/S0300-9440(99)00019-3.

35. Kin, H., Hayashi, S., & Mizumachi, H. (1998). Miscibility and fracture energy of probe tack for acrylic pressure-sensitive adhesives: acrylic copolymer/tackifier resin systems. Journal of Applied Polymer Science, 69(3), 581-587. http://dx.doi.org/10.1002/(SICI)1097-4628(19980718)69:3<581::AID-APP18>3.0.CO;2-W.
588371dc7f8c9d0a0c8b4ac5 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections