Polímeros: Ciência e Tecnologia
https://www.revistapolimeros.org.br/article/doi/10.1590/0104-1428.2237
Polímeros: Ciência e Tecnologia
Scientific & Technical Article

Produção de poli(3-hidroxibutirato) por Cupriavidus necator em batelada alimentada usando glicerol

Poly(3-hydroxybutyrate) production synthesized by Cupriavidus necator on fed-batch culture using glycerol

Sombrio, Bruna Regina; Schneider, Andréa Lima dos Santos; Pezzin, Ana Paula Testa; Apati, Giannini; Schroeder, Tamiris

Downloads: 0
Views: 1134

Resumo

Poli(3-hidroxibutirato) [P(3HB)] é um poliéster natural, biodegradável e é considerado um substituto atrativo para polímeros petroquímicos, pois tem a vantagem de ser degradado em solo dentro de alguns meses por micro-organismos. Este trabalho explora três estratégias para sintetizar P(3HB) a partir de Cupriavidus necator tendo glicerol como cosubstrato: cultivo sem glicerol, com adição de 20 g L–1 de glicerol na fase de produção do polímero e 20 g L–1 de glicerol no início do cultivo, a fim de avaliar o seu efeito sobre o crescimento celular e a síntese do polímero. Os resultados mostraram que a adição de glicerol no início do cultivo conduziu a maiores valores de percentagem de acúmulo de P(3HB) (64,12%). No entanto, nos experimentos sem glicerol podem ser observados maiores valores para fator de conversão em substrato (0,17 g g–1). Esses parâmetros apresentaram diferenças estatisticamente significativas em função da estratégia de cultivo utilizado.

Palavras-chave

polímero biodegradável, biossíntese, glicerol, poli(hidroxialcanoato).

Abstract

Poly(3-hydroxybutyrate) [P(3HB)] is a natural, biodegradable polyester and is considered an attractive substitute for the petrochemical polymers, because has advantage of being degraded in the soil within a few months by microorganisms. This work exploits three strategies to synthesize P(3HB) from of the Cupriavidus necator with glycerol as co-substrate: cultivation without glycerol, with addition of 20 g L–1 glycerol in the phase of polymer producing and addition of 20 g L–1 of glycerol at the start of cultivation, in order to evaluate its effect on cell growth and the synthesis of the polymer. The results showed that the addition of glycerol at the start of culture led to highest values of accumulation percentage the P(3HB) (64.12%). However, in the experiments without glycerol can be observed higher values toward biomass to substrate yield (0.17 g g–1). These parameters presented statistically significant differences in function of the cultivation strategy used.

Keywords

biodegradable polymer, biosynthesis, glycerol, poly(hydroxyalcanoate).

References

1. Faria, A. U., & Franchetti, S. M. M. (2010). Biodegradação de filmes de polipropileno (PP), poli(3-hidroxibutirato) (PHB) e blenda de PP/PHB por microrganismos das águas do Rio Atibaia. Polímeros: Ciência e Tecnologia, 20(2), 141-147. http://dx.doi.org/10.1590/S0104-14282010005000024.

2. Vogelsanger, N., Formolo, M. C., Pezzin, A. P. T., Schneider, A. L. S., Furlan, S. A., Bernardo, H. P., Pezzin, S. H., Pires, A. T. N., & Duek, E. A. R. (2003). Blendas biodegradáveis de Poli(3-Hidroxibutirato)/Poli(ε-Caprolactona): obtenção e estudo da miscibilidade. Materials Research, 6(3), 359-365. http://dx.doi.org/10.1590/S1516-14392003000300010.

3. Roa, J. P. B., Mano, V., Faustino, P. B., Felix, E. B., Ribeiro e Silva, M. E. S., & Souza Filho, J. D., Fo (2010). Síntese e caracterização do copolímero poli(3-hidroxibutirato-co-ε-caprolactona) a partir de poli(3-hidroxibutirato) e poli(ε-caprolactona). Polímeros: Ciência e Tecnologia, 20(3), 221-226. http://dx.doi.org/10.1590/S0104-14282010005000038.

4. Posada, J. A., Naranjo, J. M., López, J. A., Higuita, J. C., & Cardona, C. A. (2011). Design and analysis of poly-3-hydroxybutyrate production processes from crude glycerol. Process Biochemistry, 46(1), 310-317. http://dx.doi.org/10.1016/j.procbio.2010.09.003.

5. Khanna, S., & Srivastava, A. K. (2005). Recent advances in microbial polyhydroxyalkanoates. Process Biochemistry, 40(2), 607-619. http://dx.doi.org/10.1016/j.procbio.2004.01.053.

6. García, I. L., López, J. A., Dorado, M. P., Kopsahelis, N., Alexandri, M., Papanikolaou, S., Villar, M. A., & Koutinas, A. A. (2013). Evaluation of by-products from the biodiesel industry as fermentation feedstock for poly(3-hydroxybutyrate-co-3-hydroxyvalerate) production by Cupriavidus necator. Bioresource Technology, 130, 16-22. PMid:23280181. http://dx.doi.org/10.1016/j.biortech.2012.11.088.

7. Suriyamongkol, P., Weselake, R., Narine, S., Moloney, M., & Shah, S. (2007). Biotechnological approaches for the production of polyhydroxyalkanoates in microorganisms and plants: a review. Biotechnology Advances, 25(2), 148-175. PMid:17222526. http://dx.doi.org/10.1016/j.biotechadv.2006.11.007.

8. Wong, Y.-M., Brigham, C. J., Rha, C. K., Sinskey, A. J., & Sudesh, K. (2012). Biosynthesis and characterization of polyhydroxyalkanoate containing high 3-hydroxyhexanoate monomer fraction from crude palm kernel oil by recombinant Cupriavidus necator. Bioresource Technology, 121, 320-327. PMid:22858502. http://dx.doi.org/10.1016/j.biortech.2012.07.015.

9. Chai, H.-L., Ahmad, R., Yahya, A. R. M., Majid, M. I. A., & Amirul, A. A. (2009). Microbial synthesis of poly (3-hydroxybutyrate-co-4-hydroxybutyrate) copolymer by Cupriavidus sp USMAA2-4 through a two-step cultivation process. African Journal of Biotechnology, 8(17), 4189-4196.

10. Cavalheiro, J. M. B. T., Raposo, R. S., Almeida, M. C. M. D., Cesário, M. T., Sevrin, C., Grandfils, C., & Fonseca, M. M. R. (2012). Effect of cultivation parameters on the production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) and poly(3-hydroxybutyrate-4-hydroxybutyrate-3-hydroxyvalerate) by Cupriavidus necator using waste glycerol. Bioresource Technology, 111, 391-397. PMid:22382294. http://dx.doi.org/10.1016/j.biortech.2012.01.176.

11. Page, W. J. (1992). Production of PHA by Azotobacter vinelandii UWD in beet molasses culture. FEMS Microbiology Letters, 103, 144-158. http://dx.doi.org/10.1111/j.1574-6968.1992.tb05832.x.

12. Fukui, T., & Doi, Y. (1998). Efficient production of polyhydroxyalkanoates from plant oils by Alcaligenes eutrophus and its recombinant strain. Applied Microbiology and Biotechnology, 49(3), 333-336. PMid:9581296. http://dx.doi.org/10.1007/s002530051178.

13. Tanadchangsaeng, N., & Yu, J. (2012). Microbial synthesis of polyhydroxybutyrate from glycerol: gluconeogenesis, molecular weight and material properties of biopolyester. Biotechnology and Bioengineering, 109(11), 2808-2818. PMid:22566160. http://dx.doi.org/10.1002/bit.24546.

14. Silva, G. P., Mack, M., & Contiero, J. (2009). Glycerol: a promising and abundant carbon source for industrial microbiology. Biotechnology Advances, 27(1), 30-39. PMid:18775486. http://dx.doi.org/10.1016/j.biotechadv.2008.07.006.

15. Cavalheiro, J. M. B. T., Almeida, M. C. M. D., Grandfils, C., & Fonseca, M. M. R. (2009). Poly(3-hydroxybutyrate) production by Cupriavidus necator using waste glycerol. Process Biochemistry, 44(5), 509-515. http://dx.doi.org/10.1016/j.procbio.2009.01.008.

16. Mota, C. J. A., Silva, C. X. A., & Gonçalves, V. L. C. (2009). Gliceroquímica: novos produtos e processos a partir da Glicerina de produção de biodiesel. Quimica Nova, 32(3), 639-648. http://dx.doi.org/10.1590/S0100-40422009000300008.

17. Leibniz-Institute DSMZ – Deutsche Sammlung von Mikroorganismen und Zellkulturen. (2015). Recuperado em 02 de fevereiro de 2015, de http://www.dsmz.de/catalogues/details/culture/DSM-545.html?tx_dsmzresources_pi5%5BreturnPid%5D=304

18. Miller, G. L. (1959). Use of dinitrosalicilic acid reagent for determination of reducing sugar. Analytical Chemistry, 31(3), 426-428. http://dx.doi.org/10.1021/ac60147a030.

19. Lee, S. Y., Choi, J., & Wong, H. H. (1999). Recent advances in polyhydroxyalkanoate production by bacterial fermentation: mini-review. International Journal of Biological Macromolecules, 25(1-3), 31-36. PMid:10416647. http://dx.doi.org/10.1016/S0141-8130(99)00012-4.

20. Mothes, G., Schnorpfeil, C., & Ackermann, J.-U. (2007). Production of PHB from Crude Glycerol. Engineering in Life Sciences, 7(5), 475-479. http://dx.doi.org/10.1002/elsc.200620210.

21. Kachrimanidou, V., Kopsahelis, N., Papanikolaou, S., Kookos, I. K., De Bruyn, M., Clark, J. H., & Koutinas, A. A. (2014). Sunflower-based biorefinery: Poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) production from crude glycerol, sunflower meal and levulinic acid. Bioresource Technology, 172, 121-130. PMid:25255188. http://dx.doi.org/10.1016/j.biortech.2014.08.044.

5b7ac71d0e8825ba6d896e56 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections