Polímeros: Ciência e Tecnologia
https://www.revistapolimeros.org.br/article/doi/10.1590/0104-1428.2220
Polímeros: Ciência e Tecnologia
Scientific & Technical Article

Nanocompósitos de poli(álcool vinílico) contendo materiais híbridos mimetizando o pigmento Azul Maya

Poly(vinyl alcohol) nanocomposites containing hybrid materials mimicking the Maya Blue pigment

Kupfer, Vicente Lira; Jaerger, Silvia; Wypych, Fernando

Downloads: 0
Views: 1077

Resumo

De forma a mimetizar o pigmento Azul Maya, dois corantes azo (alaranjado de metila - AM e vermelho congo - VC) foram inseridos na estrutura porosa da paligorsquita. Os materiais híbridos foram caracterizados por difração de raios X, espectroscopia de energia dispersiva, microscopia eletrônica de varredura, espectroscopia na região do ultravioleta-visível e análise superficial (área superficial por BET, tamanho e volume de poros por BJH). Após dispersar os materiais híbridos no poli(álcool vinílico), filmes coloridos e transparentes foram obtidos por casting úmido. Após acondicionamento em uma dessecador por uma semana a uma umidade controlada de 43 ± 2% os filmes foram avaliados em relação as suas propriedades mecânicas. De modo geral, o material PVA-PGS/AM teve um aumento no módulo de Young, tensão de ruptura e redução do alongamento enquanto que a paligorsquita bruta e PVA-PGS/VC apresentaram um comportamento oposto.

Palavras-chave

corante azo, materiais híbridos, propriedades mecânicas, paligorsquita, poli(álcool vinílico).

Abstract

To mimic the Maya Blue pigment, two azo dyes (methylorange - AM and congo red - VC) were inserted into the porous structure of paligorskite. The hybrid materials were characterized by X-ray diffraction, energy dispersive spectroscopy, scanning electron microscopy, UV-Vis spectroscopy and surface analysis (surface area by BET, pore size and volume by and BJH). After dispersing the hybrid materials into poly(vinyl alcohol), colored and transparent films were obtained by wet casting. After conditioned into desiccators at controlled humidity of 43 ± 2% for one week, the films were evaluated in relation to their mechanical properties. In general, the material PVA-PGS/AM increases Young’s modulus and ultimate tensile strength reducing the elongation while raw paligorskite and PVA-PGS/VC presented an opposite behavior.

Keywords

azo dyes, hybrid materials, mechanical properties, palygorskite, poly(vinyl alcohol).

References

1. Usuki, A., Kawasumi, M., Kojima, Y., Okada, A., Kurauchi, T., & Kamigaito, O. (1993). Swelling behavior of montmorillonite cation exchanged for ω -amino acids by Є-caprolactam. Journal of Materials Research, 8(5), 1174-1178. http://dx.doi.org/10.1557/JMR.1993.1174.

2. Kojima, Y., Usuki, A., Kawasumi, M., Okada, A., Fukushima, Y., Kurauchi, T., & Kamigaito, O. (1993). Mechanical properties of nylon 6-clay hybrid. Journal of Materials Research, 8(5), 1185-1189. http://dx.doi.org/10.1557/JMR.1993.1185.

3. Lombardo, P. C., Poli, A. L., & Schitt, C. C. (2015). Influência de estabilizantes na degradação foto-oxidativa de filmes de compósitos de SWy-1/poli(óxido de etileno). Polímeros: Ciência e Tecnologia, 25(1), 101-108. http://dx.doi.org/10.1590/0104-1428.1604.

4. Lecouvet, B., Sclavons, M., Bourbigot, S., & Bailly, C. (2013). Thermal and flammability properties of polyethersulfone/halloysite nanocomposites prepared by melt compounding. Polymer Degradation & Stability, 98(10), 1993-2004. http://dx.doi.org/10.1016/j.polymdegradstab.2013.07.013.

5. Cavalcanti, W. S., Brito, G. F., Agraval, P., Melo, T. J. A., Neves, G. A., & Dantas, M. M. (2014). Purification and organophilization in pilot scale of bentonitic clays with a non-ionic surfactant and their application in polymer nanocomposites. Polímeros: Ciência e Tecnologia, 24(4), 491-500. http://dx.doi.org/10.1590/0104-1428.1539.

6. Komatsu, D., Otaguro, H., & Ruvolo Filho, A. (2014). Avaliação comparativa entre os nanocompósitos de argila motmorilonita/LLDPE e com hexaniobato de potássio/LLDPE: caracterização das propriedades mecânicas e de transporte. Polímeros: Ciência e Tecnologia, 24(1), 37-44. http://dx.doi.org/10.4322/polimeros.2013.052.

7. Arnold, D. E. (2005). Maya blue and Palygorskite: a second possible pre-Columbian source. Ancient Mesoamerica, 16(1), 51-62. http://dx.doi.org/10.1017/S0956536105050078.

8. Van Olphen, H. (1966). Maya blue: a clay organic pigment? Science, 154(3749), 645-646. http://dx.doi.org/10.1126/science.154.3749.645. PMid:17778806.

9. Kleber, R., Masschelein-Kleiner, L., & Thissen, J. (1967). Study and identification of Maya blue. Studies in Conservation, 12(1), 41-56.

10. Giustetto, R., Seenivasan, K., Pellerej, D., Ricchiardi, G., & Bordiga, S. (2012). Spectroscopic characterization and photo/thermal resistance of a hybrid palygorskite/methyl red Mayan pigment. Microporous and Mesoporous Materials, 155(1), 167-176. http://dx.doi.org/10.1016/j.micromeso.2012.01.024.

11. Giustetto, R., & Wahyudi, O. (2011). Sorption of red dyes on palygorskite: Synthesis and stability of red/purple Mayan nanocomposites. Microporous and Mesoporous Materials, 142(1), 221-235. http://dx.doi.org/10.1016/j.micromeso.2010.12.004.

12. Chen, H., & Zhao, J. (2009). Adsorption study for removal of Congo red anionic dye using organo-attapulgite. Adsorption, 15(4), 381-389. http://dx.doi.org/10.1007/s10450-009-9155-z.

13. Zhang, Y., Wang, W., Zhang, J., Liu, P., & Wang, A. (2015). A comparative study about adsorption of natural palygorskite for methylene blue. Chemical Engineering Journal, 262(1), 390-398. http://dx.doi.org/10.1016/j.cej.2014.10.009.

14. Del Rio, M. S., Martinetto, P., Reyes-Valerio, C., Dooryhee, E., & Suarez, M. (2006). Synthesis and acid resistance of Maya Blue pigment. Archaeometry, 48(1), 115-130. http://dx.doi.org/10.1111/j.1475-4754.2006.00246.x.

15. Marangoni, R., Gardolinski, J. E. F C., Mikowski, A., & Wypych, F. (2011). PVA nanocomposites reinforced with Zn2Al LDHs, intercalated with orange dyes. Journal of Solid State Electrochemistry, 15(2), 303-311. http://dx.doi.org/10.1007/s10008-010-1056-2.

16. Marangoni, R., Ramos, L. P., & Wypych, F. (2009). New multifunctional materials obtained by the intercalation of anionic dyes into layered zinc hydroxide nitrate followed by dispersion into poly(vinyl alcohol) (PVA). Journal of Colloid and Interface Science, 330(2), 303-309. http://dx.doi.org/10.1016/j.jcis.2008.10.081. PMid:19081109.

17. Zimmermann, A., Jareger, S., Zawadzki, S. F., & Wypych, F. (2014). Nanocompósitos poliméricos de polietileno de alta densidade contendo hidróxidos duplos lamelares intercalados com anions derivados de corantes azo. Polímeros: Ciência e Tecnologia, 24(3), 332-343. http://dx.doi.org/10.4322/polimeros.2014.025.

18. da Silva, M. L. N., Marangoni, R., da Silva, A. H., Schreiner, W. H., & Wypych, F. (2013). Poly(vinyl alcohol) composites containing layered hydroxide salts, intercalated with anionic azo dyes (Tropaeolin 0 and Tropaeolin 0), Polímeros: Ciência e Tecnologia, 23(2), 248-256. http://dx.doi.org/10.1590/S0104-14282013005000026.

19. Sing, K. S. W., Everett, D. H., Haul, R., Moscou, L., Pierotti, R. A., Rouguerol, J., & Siemieniewska, T. (1985). Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (recommendations 1984). Pure and Applied Chemistry, 57(4), 603-619. http://dx.doi.org/10.1351/pac198557040603.

20. Boudriche, L., Calvet, R., Hamdi, B., & Balard, H. (2011). Effect of acid treatment on surface properties evolution of attapulgite clay: an application of inverse gas chromatography. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 392(1), 45-54. http://dx.doi.org/10.1016/j.colsurfa.2011.09.031.

21. Wang, C. C., Juang, L. C., Lee, C. K., Hsu, T. C., Lee, J. F., & Chao, H. P. (2004). Effects of exchanged surfactant cations on the pore structure and adsorption characteristicsof montmorillonite. Journal of Colloid and Interface Science, 280(1), 27-35. http://dx.doi.org/10.1016/j.jcis.2004.07.009. PMid:15476770.

22. Ricciardi, R., Auriemma, F., De Rosa, C., & Laupretre, F. (2004). X-ray diffraction analysis of poly(vinyl alcohol) hydrogels, obtained by freezing and thawing techniques. Macromolecules, 37(5), 1921-1927. http://dx.doi.org/10.1021/ma035663q.

23. Garcia-Cerda, L. A., Escareno-Castro, M. U., & Salazar-Zertuche, M. (2007). Preparation and characterization of polyvinyl alcohol-cobalt ferrite nanocomposites. Journal of Non-Crystalline Solids, 353(8-10), 808-810. http://dx.doi.org/10.1016/j.jnoncrysol.2006.12.046.
588371cd7f8c9d0a0c8b4a85 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections