Polímeros: Ciência e Tecnologia
https://www.revistapolimeros.org.br/article/doi/10.1590/0104-1428.2110
Polímeros: Ciência e Tecnologia
Scientific & Technical Article

Avaliação das propriedades elétricas de barras estatóricas fabricadas com resina do tipo éter diglicidílico do bisfenol F (DGEBF) contendo nanopartículas de silica

Evaluation of electrical properties of stator bars manufactured with bisphenol F diglycidyl ether resin containing silica nanoparticles

Conceição, Rafael Novaes da; Campos, João Sinézio de Carvalho

Downloads: 0
Views: 1119

Resumo

O presente trabalho visa apresentar resultados da aplicação de uma resina epóxi bisfenólica (DGEBF) à base de nanopartículas de sílica (RN) e comparar suas propriedades com a resina convencional de referência epóxi bisfenólica (DGEBA) (RE), atualmente utilizada. Neste sentido fabricaram-se protótipos de barras estatórica, destinadas a hidrogeradores, através do sistema VPI (Vácuo-Pressão-Impregnação) e avaliaram-se as propriedades elétricas pelas técnicas de fator de dissipação e envelhecimento acelerado. Dentre os resultados para as resinas observou-se que: (i) o fator de dissipação e de envelhecimento são praticamente os mesmos para ambas as resinas; (ii) o valor de tip-up resultaram em 0,014% para RE e 0,020% para a resina RN e (iii) a estimativa do tempo de vida útil esta em cerca de 40 anos, o que é aplicável para a maioria das aplicações industriais. Neste sentido sugere-se que a resina RN pode ser uma alternativa a resina RE, com um desempenho elétrico equivalente.

Palavras-chave

barras estatóricas, fita de mica, hidrogerador, nanodielétricos, nanotecnologia.

Abstract

The present work aims to present the results of an application of a bisphenolic epoxy resin (DGEBF) containing silica nanoparticles (RN) and compare its properties with a bisphenolic epoxy resin (DGEBA) (RE), currently used. In this context, prototype stator bars for hydrogenerators were manufactured, according to the VPI (Vacuum-Pressure-Impregnation) system and their electrical properties with the tests of dissipation factor and voltage endurance. Within the results for the resins it was observed that: (i) dissipation factor and voltage endurance are practically the same for both resins; (ii) the resulting values of tip-up were 0.014% for RE and 0.020% for RN resin and (iii) the estimating of the life-time is about 40 years, what is suitable for most industrial applications. In this sense it is suggested that the RN resin can be an alternative to the RE resin, with an equivalent electrical performance.

Keywords

stator bars, mica tape, hydrogenerator, nanodielectrics, nanotechnology.

References

1. Sumereder, C., & Weiers, T. (2008). Significance of defects inside in-service aged winding insulations. IEEE Transactions on Energy Conversion, 23(1), 9-14. http://dx.doi.org/10.1109/TEC.2006.888037.

2. Marek, P. (2006). New carrier for high voltage insulation materials (Doctoral thesis). TU Graz, Austria.

3. Meichsner, C. (2013). Eigenschaftsoptimierung nanopartikulärer epoxidharzsysteme (Doctoral thesis). FAU Erlangen, Deutschland.

4. Tanaka, T. (2005). Dielectric nanocomposites with insulating properties. IEEE Transactions on Dielectrics and Electrical Insulation, 12(5), 914-928. http://dx.doi.org/10.1109/TDEI.2005.1522186.

5. Tanaka, T., Montanari, G. C., & Mülhaupt, R. (2004). Polymer nanocomposites as dielectrics and electrical insulation-perspectives for processing technologies, material characterization and future applications. IEEE Transactions on Dielectrics and Electrical Insulation, 11(5), 763-784. http://dx.doi.org/10.1109/TDEI.2004.1349782.

6. Cao, Y., Irwin, P. C., & Younsi, K. (2004). The future of nanodielectrics in the electrical power industry. IEEE Transactions on Dielectrics and Electrical Insulation, 11(5), 797-807. http://dx.doi.org/10.1109/TDEI.2004.1349785.

7. Von Roll, I. (2002). Electrical insulating materials: technical data sheets. Switzerland: Von Roll Isola Breitenbach.

8. Emery, F. T. (2005). Partial discharge, Dissipation factor, and corona aspects for high voltage electric generator stator bars and windings. IEEE Transactions on Dielectrics and Electrical Insulation, 12(2), 347-361. http://dx.doi.org/10.1109/TDEI.2005.1430403.

9. Wichmann, A. (1983). Two decades of experience and progress in epoxy mica insulation systems for large rotating machines. IEEE Transactions on Power Apparatus and Systems, PAS-102(1), 74-82. http://dx.doi.org/10.1109/TPAS.1983.318000.

10. International Electrotechnical Commission – IEC. (2005). IEC 60371-3-2: insulating materials based on mica. Part 3: specifications for individual materials. Sheet 2: mica paper. Geneva: IEC.

11. Institute of Electrical and Electronics Engineers – IEEE. (2000). IEEE 286: recommended Practice for Measurement of Power Factor Tip-Up of Electric Machinery Stator Coil Insulation. New York: IEEE.

12. European Norm – EN. (1998). EN 50209: test of insulation of bars and coils of high-voltage machines. Brussels: EN.

13. Keuring van Elektrotechnische Materialen te Arnhem – KEMA. (2009). S13/14: KEMA: specification for hydrogen, liquid and air-cooled, synchronous a.c. generators with rated voltage 5 kV and above. Arnhem: KEMA.

14. Institute of Electrical and Electronics Engineers – IEEE. (2002). IEEE 1553: trial-use standard for voltage-endurance testing of form-wound coils and bars for hydrogenerators. New York: IEEE.

15. Singha, S., & Thomas, M. J. (2008). Permittivity and tan delta characteristics of epoxy nanocomposites in the frequency range of 1 MHz-1 GHz. IEEE Transactions on Dielectrics and Electrical Insulation, 15(1), 2-11. http://dx.doi.org/10.1109/T-DEI.2008.4446731.

16. Institute of Electrical and Electronics Engineers – IEEE. (2004). IEEE 930: guide for the statistical analysis of electrical insulation breakdown data. New York: IEEE.

17. Dissado, L. A. & Fothergill, J. C. (1992). Electrical degradation and breakdown in polymers. London: Institution of Engineering and Technology.

18. Yamazaki, K., Imai, T., Ozaki, T., Cho, H., Sekiya, H., Takeuchi, M., Tanaka, M., Asayama, M., & Osako, T. (2012). Preparation and characteristic evaluation of hydrophobic epoxy-based nanocomposites. In Annual Report Conference on Electrical Insulation and Dielectric Phenomena (CEIDP) (pp. 283-286). Montreal: IEEE. http://dx.doi.org/10. 1109/CEIDP.2012.6378776

19. Nelson, J. K., & Hu, Y. (2005). Nanocomposite dielectrics: properties and implications. Journal of Physics. D, Applied Physics, 38(2), 213-222. http://dx.doi.org/10.1088/0022-3727/38/2/005.

20. Roy, M., Nelson, J. K., Maccrone, R. K., Schadler, L. S., Reed, C. W., Keefe, R., & Zenger, W. (2005). Polymer nanocomposite dielectrics: the role of the interface. IEEE Transactions on Dielectrics and Electrical Insulation, 12(4), 629-643. http://dx.doi.org/10.1109/TDEI.2005.1511089.

21. Iizuka, T., Uchida, K., & Tanaka, T. (2007). Different voltage endurance characteristics of epoxy/silica nanocomposites prepared by two kinds of dispersion methods. In Conference on Electrical Insulation and Dielectric Phenomena (pp. 236-239). Vancouver: IEEE.

22. Wichmann, A., & Gruenewald, P. (1977). Influence of dielectric stress concentration on voltage endurance of epoxy-mica generator insulation. IEEE Transactions on Dielectrics and Electrical Insulation, EI-102(6), 428-434. http://dx.doi.org/10.1109/TEI.1977.297995.

23. Tani, T., Otosaki, K., Isoma, S., Matsuda, S., & Hirabayashi, S. (1985). Study on the voltage endurance and prediction of the dielectric breakdown of high voltage rotating machine insulations. Institute of Electrical Engineering in Japan, 105(5), 26-33. http://dx.doi.org/10.1002/eej.4391050504.

24. Stone, G. C., Boulter, E. A., Culbert, I., & Dhirani, H. (2004). Electrical insulation for rotating machines: design, evolution, aging testing, and repair. Piscataway: Wiley-Interscience. IEEE Press Series on Power Engineering.

25. Lisevski, C. I., Wolski, C. M. O., Munaro, M., Serta, R. G., Machado, R. P., Kowalski, E., & Pombeiro, A. (2012). Estudo do efeito do ozônio gerado durante ensaios elétricos em equipamentos de segurança confeccionados em Borracha Natural. Polímeros: Ciência e Tecnologia, 22(2), 142-148. http://dx.doi.org/10.1590/S0104-14282012005000015.
588371d97f8c9d0a0c8b4ab5 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections