Polímeros: Ciência e Tecnologia
https://www.revistapolimeros.org.br/article/doi/10.1590/0104-1428.210075
Polímeros: Ciência e Tecnologia
Original Article

CO2 adsorption by cryogels produced from poultry litter wastes

Lídia Kunz Lazzari; Daniele Perondi; Ademir José Zattera; Ruth Marlene Campomanes Santana

Downloads: 1
Views: 463

Abstract

Poultry litter waste (PLW) is the main by-product generated by the Brazilian poultry industry. A sustainable approach for reusing this waste is the production of biochar to be further used aiming CO2 adsorption. In this work, biochars were produced by varying the N2 flow along the pyrolysis process of 150 (PLW-150) and 1000 (PLW-1000) mL min-1. PLW and biochars were characterized for their morphology, porosity, specific surface area, and CO2 adsorption capacity. From the biochars, carbon cryogels (CC) were produced aiming their use as CO2 adsorbents. The results of the cryogel adsorption test showed a CO2 adsorption capacity of 13.1±2.9 and 33.8±3.3 mg g-1 for the CC-PLW.150 and CC-PLW.1000 cryogels, respectively. Therefore, reusing this residue for cryogels production and its use in the CO2 adsorption signifies an attractive perspective to minimize the environmental damage caused by CO2 emissions.

Keywords

biochar, carbon cryogels, CO2 adsorption, porous materials, poultry litter wastes

References

Perondi, D., Poletto, P., Restelatto, D., Manera, C., Silva, J. P., Junges, J., Collazzo, G. C., Dettmer, A., Godinho, M., & Vilela, A. C. F. (2017). Steam gasification of poultry litter biochar for bio-syngas production. Process Safety and Environmental Protection, 109, 478-488. http://dx.doi.org/10.1016/j.psep.2017.04.029.

Basu, P. (2010). Biomass gasification and pyrolysus: pratical design ans theory. USA: Academic Press.

Hüsing, N., & Schubert, U. (1998). Aerogels-airy materials: chemistry, structure, and properties. Angewandte Chemie International Edition, 37(1-2), 22-45. http://dx.doi.org/10.1002/(SICI)1521-3773(19980202)37:1/2<22::AID-ANIE22>3.0.CO;2-I. PMid:29710971.

Onay, O., & Kockar, O. M. (2003). Slow, fast and flash pyrolysis of repeseed. Renewable Energy, 28(15), 2417-2433. http://dx.doi.org/10.1016/S0960-1481(03)00137-X.

Miao, Y., Luo, H., Pudukudy, M., Zhi, Y., Zhao, W., Shan, S., Jia, Q., & Ni, Y. (2020). CO2 capture performance and characterization of cellulose aerogels synthesized from old corrugated containers. Carbohydrate Polymers, 227, 115380. http://dx.doi.org/10.1016/j.carbpol.2019.115380. PMid:31590848.

Khalilpour, R., Mumford, K., Zhai, H., Abbas, A., Stevens, G., & Rubin, E. S. (2015). Membrane-based carbon capture from flue gas: a review. Journal of Cleaner Production, 103, 286-300. http://dx.doi.org/10.1016/j.jclepro.2014.10.050.

Leung, D. Y. C., Caramanna, G., & Maroto-Valer, M. M. (2014). An overreview of current status of carbon dioxide capture and storage technologies. Renewable & Sustainable Energy Reviews, 39, 426-443. http://dx.doi.org/10.1016/j.rser.2014.07.093.

Maleki, H. (2016). Recent advances in aerogels for environmental remediation applications: a review. Chemical Engineering Journal, 300, 98-118. http://dx.doi.org/10.1016/j.cej.2016.04.098.

Zhao, S., Malfait, W. J., Guerrero-Alburquerque, N., Koebel, M. M., & Nystrom, G. (2018). Biopolymer aerogels and foams: chemistry, properties, and applications. Angewandte Chemie International Edition, 57(26), 7580-7608. http://dx.doi.org/10.1002/anie.201709014. PMid:29316086.

Dassanayake, R. S., Gunathilake, C., Dassanayake, A. C., Abidi, N., & Jaroniec, M. (2015). Amidoxime-functionalized nanocrystalline cellulose-mesoporous silica composites for carbon dioxide sorption at ambient and elevated temperatures. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 5(16), 7462-7473. http://dx.doi.org/10.1039/C7TA01038A.

Aegerter, M. A., Leventis, N., & Koebel, M. M. (2011). Aerogels handbook. Switzerland: Springer. http://dx.doi.org/10.1007/978-1-4419-7589-8.

Mortari, D. A., Perondi, D., Rossi, G. B., Bonato, J. L., Godinho, M., & Pereira, F. M. (2021). The influence of water-soluble inorganic matter on combustion of grape pomace and its chars produced by slow and fast pyrolysis. Fuel, 284, 118880. http://dx.doi.org/10.1016/j.fuel.2020.118880.

Zazycki, M. A., Godinho, M., Perondi, D., Foletto, E. L., Collazzo, G. C., & Dotto, G. L. (2018). New biochar from pecan nutshells as na alternative adsorbent for removing reactive red 141 from aqueous solutions. Journal of Cleaner Production, 171, 57-65. http://dx.doi.org/10.1016/j.jclepro.2017.10.007.

Yu, S., Park, J., Kim, M., Ryu, C., & Park, J. (2019). Characterization of biochar and byproducts from slow pyrolysis of hinoki cypress. Bioresource Technology Reports, 6, 217-222. http://dx.doi.org/10.1016/j.biteb.2019.03.009.

Wu, F., Tseng, R., & Hu, C. (2005). Comparisons of pore properties and adsorption performance of KOH-activated and steam-activated carbons. Microporous and Mesoporous Materials, 80(1-3), 95-106. http://dx.doi.org/10.1016/j.micromeso.2004.12.005.

Baniasadi, M., Tugnoli, A., Conti, R., Torri, C., Fabbri, D., & Cozzani, V. (2016). Waste to energy valorization of poultry litter by slow pyrolysis. Renewable Energy, 90, 458-468. http://dx.doi.org/10.1016/j.renene.2016.01.018.

Zhang, X., Li, W., & Lu, A. (2015). Designed porous carbon materials for efficient CO2 adsorption and separation. New Carbon Materials, 30(6), 481-501. http://dx.doi.org/10.1016/S1872-5805(15)60203-7.
 

62c5d0aaa953952cdc6769f4 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections