Polímeros: Ciência e Tecnologia
https://www.revistapolimeros.org.br/article/doi/10.1590/0104-1428.210043
Polímeros: Ciência e Tecnologia
Original Article

Structural and optical properties o plasma-deposited a-C:H:Si:O:N films

Juliana Feletto Silveira Costa Lopes; Jean Tardelli; Elidiane Cipriano Rangel; Steven Frederick Durrant

Downloads: 0
Views: 451

Abstract

Thin a-C:H:Si:O:N films were deposited from plasmas fed hexamethyldisiloxane, oxygen and nitrogen, and characterized as a function of the partial pressure of oxygen in the feed, Rox. Deposition rates varied from 10 to 27 nm min-1. Surface roughness was independent of Rox, being around 10 nm. The films contain C=C and C=O, and also Si-C and Si-O-Si groups. Lower [C] and [N] but greater [O] and [Si] were measured in the films as Rox was increased. Refractive indices of ~ 1.5 and optical energy gaps which fell from ~ 3.3 to ~2.3 eV were observed with increasing Rox. The Urbach energy fell with increasing optical gap, which is characteristic of amorphous materials. Such materials have potential as transparent barrier coatings.

Keywords

plasma enhanced chemical vapor deposition, optical band gap, urbach energy

References

1 Gerstenberg, K. W., & Beyer, W. (1987). Gas evolution studies for structural characterization of hexamethyldisilazane‐based a‐Si:C:N:H films. Journal of Applied Physics, 62(5), 1782-1787. http://dx.doi.org/10.1063/1.339556.

2 Levy, R. A., Grow, J. M., Yu, Y., & Shih, K. T. (1995). Plasma enhanced chemical vapor deposition of Si-N-C-H films from environmentally benign organosilanes. Materials Letters, 24(1-3), 47-52. http://dx.doi.org/10.1016/0167-577X(95)00069-0.

3 Shimizu, T., Ishii, T., Kumeda, M., Matsuda, A. (1998). Structural and conductivity change caused by N, O and C incorporation in a-Si:H. Journal of Non-crystalline Solids, 227-230(Pt 1), 403-406. http://dx.doi.org/10.1016/S0022-3093(98)00083-0.

4 Levy, R. A., Chen, L., Grow, J. M., & Yu, Y. (2002). A comparative study of plasma enhanced chemically vapor deposited SiOH and SiNCH films using the environmentally benign precursor diethylsilane. Materials Letters, 54(2-3), 102-107. http://dx.doi.org/10.1016/S0167-577X(01)00545-6.

5 Vetter, M., Martin, I., Orpella, A., Puigdollers, J., Voz, C., & Alcubilla, R. (2004). IR-study of a-SiCx: H and a-SiCxNy: H films for c-Si surface passivation. Thin Solid Films, 451-451, 340-344. http://dx.doi.org/10.1016/j.tsf.2003.10.125.

6 Tóth, A., Mohai, M., Ujvári, T., & Bertóti, I. (2005). Surface and nanomechanical properties of Si:C:H films prepared by RF plasma beam CVD. Diamond and Related Materials, 14(3-7), 954-958. http://dx.doi.org/10.1016/j.diamond.2005.01.017.

7 Probst, D., Hoche, H., Zhou, Y., Hauser, R., Stelzner, T., Scheerer, H., Broszeit, E., Berger, C., Riedel, R., Stafast, H., & Koke, E. (2005). Development of PE-CVD Si/C/N:H films for tribological and corrosive complex-load conditions. Surface and Coatings Technology, 200(1-4), 355-359. http://dx.doi.org/10.1016/j.surfcoat.2005.02.111.

8 Swatowska, B., Kluska, S., Jurzecka-Szymacha, M., Stapinski, T., & Tkacz-Smiech, K. (2016). The chemical composition and band gap of amorphous Si:C:N:H layers. Applied Surface Science, 371, 91-95. http://dx.doi.org/10.1016/j.apsusc.2016.02.198.

9 Tamulevičienė, A., Kopustinskas, V., Niaura, G., Meškinis, Š., & Tamulevičius, S. (2015). Multiwavelength Raman analysis of SiOx and N containing amorphous diamond like carbon films. Thin Solid Films, 581, 86-91. http://dx.doi.org/10.1016/j.tsf.2014.11.042.

10 Nagasawa, H., Minamizawa, T., Kanezashi, M., Yoshioka, T., & Tsuru, T. (2015). Microporous organosilica membranes for gas separation prepared via PECVD using different O/Si ratio precursors. Journal of Membrane Science, 489, 11-19. http://dx.doi.org/10.1016/j.memsci.2015.04.011.

11 Blanchard, N. E., Hanselmann, B., Drosten, J., Heuberger, M., & Hegemann, D. (2015). Densification and Hydration of HMDSO Plasma Polymers. Plasma Processes and Polymers, 12(1), 32-41. http://dx.doi.org/10.1002/ppap.201400118.

12 Turri, R. G., Santos, R. M., Rangel, E. C., da Cruz, N. C., Bortoleto, J. R. R., Dias da Silva, J. H., Antonio, C. A., & Durrant, S. F. (2013). Optical, mechanical and surface properties of amorphous carbonaceous thin films obtained by plasma enhanced chemical vapor deposition and plasma immersion ion implantation and deposition. Applied Surface Science, 280, 474-481. http://dx.doi.org/10.1016/j.apsusc.2013.05.013.

13 Bewilogua, K., Bialuch, I., Ruske, H., & Weigel, K. (2011). Preparation of a-C:H/a-C:H:Si:O and a-C:H/a-C:H:Si multilayer coatings by PACVD. Surface and Coatings Technology, 206(4), 623-629. http://dx.doi.org/10.1016/j.surfcoat.2011.02.020.

14 Gelamo, R. V., Landers, R., Rouxinol, F. P. M., Trasferetti, B. C., Bica de Moraes, M. A., Davanzo, C. U., & Durrant, S. F. (2007). XPS Investigation of plasma‐deposited polysiloxane films irradiated with helium ions. Plasma Processes and Polymers, 4(4), 482-488. http://dx.doi.org/10.1002/ppap.200600100.

15 Veres, M., Koós, M., Tóth, S., Füle, M., Pócsik, I., Tóth, A., Mohai, M., & Bertóti, I. (2005). Characterisation of aC:H and oxygen-containing Si:C:H films by Raman spectroscopy and XPS. Diamond and Related Materials, 14(3-7), 1051-1056. http://dx.doi.org/10.1016/j.diamond.2005.01.020.

16 Theirich, D., Soll, C., Leu, F., & Engemann, J. (2003). Intermediate gas phase precursors during plasma CVD of HMDSO. Vacuum, 71(3), 349-359. http://dx.doi.org/10.1016/S0042-207X(02)00763-7.

17 Barranco, A., Cotrino, J., Yubero, F., Espinós, J. P., Benítez, J., Clerc, C., & González-Elipe, A. R. (2001). Synthesis of SiO2 and SiOxCyHz thin films by microwave plasma CVD. Thin Solid Films, 401(1-2), 150-158. http://dx.doi.org/10.1016/S0040-6090(01)01632-7.

18 Schwarz, J., Schmidt, M., & Ohl, A. (1998). Synthesis of plasma-polymerized hexamethyldisiloxane (HMDSO) films by microwave discharge. Surface and Coatings Technology, 98(1-3), 859-864. http://dx.doi.org/10.1016/S0257-8972(97)00319-8.

19 Mota, R. P., Galvão, D., Durrant, S. F., De Moraes, M. A. B., de Oliveira Dantas, S., & Cantão, M. (1995). HMDSO plasma polymerization and thin film optical properties. Thin Solid Films, 270(1-2), 109-113. http://dx.doi.org/10.1016/0040-6090(95)06938-0.

20 Santos, N. M., Gonçalves, T. M., de Amorim, J., Freire, C. M. A., Bortoleto, J. R. R., Durrant, S. F., Ribeiro, R. P., Cruz, N. C., & Rangel, E. C. (2017). Effect of the plasma excitation power on the properties of SiOxCyHz films deposited on AISI 304 steel. Surface and Coatings Technology, 311, 127-137. http://dx.doi.org/10.1016/j.surfcoat.2016.12.113.

21 Willich, P., & Obertop, D. (1989). Quantitative electron-probe microanalysis of light elements: Determination of a-Si:C:N:O:H insulating films. Mikrochimica Acta, 98(4), 233-241. http://dx.doi.org/10.1007/BF01244599.

22 Körner, L., Sonnenfeld, A., Heuberger, R., Waller, J. H., Leterrier, Y., Månson, J A E., & Rudolf von Rohr, P. (2010). Oxygen permeation, mechanical and structural properties of multilayer diffusion barrier coatings on polypropylene. Journal of Physics. D, Applied Physics, 43(11), 115301. http://dx.doi.org/10.1088/0022-3727/43/11/115301.

23 Fainer, N. I., Plekhanov, A. G., Golubenko, A. N., Rumyantsev, Y. M., Maksimovskii, E. A., & Shayapov, V. R. (2017). Structure and elemental composition of transparent nanocomposite silicon oxycarbonitride films. Journal of Structural Chemistry, 58(1), 119-125. http://dx.doi.org/10.1134/S0022476617010188.

24 Amri, R., Sahel, S., Gamra, D., Lejeune, M., Clin, M., Zellama, K., & Bouchriha, H. (2017). Photonic band gap and defect mode of one-dimensional photonic crystal coated from a mixture of (HMDSO, N2) layers deposited by PECVD. Superlattices and Microstructures, 104, 298-307. http://dx.doi.org/10.1016/j.spmi.2017.02.041.

25 Martin, I., Vetter, M., Orpella, A., Voz, C., Puigdollers, J., & Alcubilla, R. (2002). Surface passivation of n-type crystalline Si by plasma-enhanced-chemical-vapor-deposited amorphous SiCx:H and amorphous SiCxNy:H films. Applied Physics Letters, 81(23), 4461-4463. http://dx.doi.org/10.1063/1.1527230.

26 Gosar, Ž., Kovač, J., Đonlagić, D., Pevec, S., Primc, G., Junkar, I., Vesel, A., & Zaplotnik, R. (2020). PECVD of hexamethyldisiloxane coatings using extremely asymmetric capacitative RF discharge. Materials (Basel), 13(9), 2147. http://dx.doi.org/10.3390/ma13092147. PMid:32384729.

27 Aumaille, K., Vallée, C., Granier, A., Goullet, A., Gaboriau, F., & Turban, G. (2000). A comparative study of oxygen/organosilicon plasmas and thin SiOxCyHz films deposited in a helicon reactor. Thin Solid Films, 359(2), 188-196. http://dx.doi.org/10.1016/S0040-6090(99)00883-4.

28 Ricci, M., Dorier, J.-L., Hollenstein, C., & Fayet, P. (2011). Influence of argon and nitrogen admisture in HMDSO/O2 plasmas onto powder formation. Plasma Processes and Polymers, 8(2), 108-117. http://dx.doi.org/10.1002/ppap.201000052.

29 Maurau, R., Boscher, N. D., Guillot, J., & Choquet, P. (2011). Nitrogen introduction in pp-HMDSO thin films deposited by atmospheric pressure dielectric barrier discharge: an xps study. Plasma Processes and Polymers, 9(3), 316-323. http://dx.doi.org/10.1002/ppap.201100144.

30 Degarmo, E. P., Black, J. T., & Kosher, R. A. (2003). Materials and processes in manufacturing. New York: John Wiley & Sons, Inc.

31 Cisneros, J. I., Rego, G. B., Tomyiama, M., Bilac, S., Gonçalves, J. M., Rodriguez, A. E., & Argüello, Z. P. (1983). A method for the determination of the complex refractive index of non- metallic thin films using photometric measurements at normal incidence. Thin Solid Films, 100(2), 155-167. http://dx.doi.org/10.1016/0040-6090(83)90471-6.

32 Tauc, J. (1972). Optical properties of solids (pp. 277). Amsterdam: North-Holland Publishing Company.

33 Balu, B., Breedveld, V., & Hess, D. W. (2008). Fabrication of roll-off and sticky superhydrophobic cellulose surfaces via plasma processing. Langmuir, 24(9), 4785-4790. http://dx.doi.org/10.1021/la703766c. PMid:18315020.

34 Steinbruchel, C., Curtis, B. J., Lehmann, H. W., & Widmer, R. (1986). Diagnostics of low-pressure oxygen RF plasmas and the mechanism for polymer etching: A comparison of reactive sputter etching and magnetron sputter etching. IEEE Transactions on Plasma Science, 14(2), 137-144. http://dx.doi.org/10.1109/TPS.1986.4316516.

35 Da Cruz, N. C., Durrant, S. F., & De Moraes, M. A. B. (1998). Thin film deposition from plasmas of tetramethylsilane-helium-argon mixtures with oxygen and with nitrogen. Journal of Polymer Science. Part B, Polymer Physics, 36(11), 1873-1879. http://dx.doi.org/10.1002/(SICI)1099-0488(199808)36:11<1873::AID-POLB8>3.0.CO;2-R.

36 Li, J., Yuan, Q., Chang, X., Wang, Y., Yin, G., & Dong, C. (2017). Deposition of organosilicone thin film from hexamethyldisiloxane (HMDSO) with 50 kHz/33 MHz dual-frequency atmospheric-pressure plasma jet. Plasma Science & Technology, 19(4), 045505. http://dx.doi.org/10.1088/2058-6272/aa57e4.

37 Morosoff, N., Crist, B., Bumgarner, M., Hsu, T., & Yasuda, H. (1976). Free radicals resulting from plasma polymerization and plasma treatment. Journal of Macromolecular Science: Part A – Chemistry, 10(3), 451-471. http://dx.doi.org/10.1080/00222337608061192.

38 Yasuda, H., Bumgarner, M. O., Marsh, H. C., & Morosoff, N. (1976). Plasma polymerization of some organic compounds and properties of the polymers. Journal of Polymer Science: Polymer Chemistry Edition, 14(1), 195-224. http://dx.doi.org/10.1002/pol.1976.170140118.

39 Lanford, W. A., & Rand, M. J. (1978). The hydrogen content of plasma‐deposited silicon nitride. Journal of Applied Physics, 49(4), 2473-2477. http://dx.doi.org/10.1063/1.325095.

40 Ghiner, A. V., & Surdutovich, G. I. (1996). Clausius-Mossotti and Lorentz-Lorenz Formulas: What is the Difference? In Eberly J. H., Mandel L., & Wolf, E. (Eds.), Coherence and Quantum Optics VII (pp. 683-684). Boston: Springer. http://dx.doi.org/10.1007/978-1-4757-9742-8_212.

41 Capaz, R. B., Assali, L. V. C., Kimerling, L. C., Cho, K., & Joannopoulos, J. D. (1999). “Ab Initio” studies of hydrogen-enhanced oxygen diffusion in silicon. Brazilian Journal of Physics, 29(4), 611-615. http://dx.doi.org/10.1590/S0103-97331999000400002.

42 Firme, C. L. (2020). Introductory chemistry and hydrocarbons: a physical chemistry approach. USA:CRC Press. http://dx.doi.org/10.1201/9781351205795.

43 Saloum, S., & Naddaf, M. (2008). Optical constants of silicone-like (Si:Ox:Cy:Hz) thin films deposited on quartz using hexamethyldisiloxane in a remote rf hollow cathode discharge plasma. Vacuum, 82(1), 50-55. http://dx.doi.org/10.1016/j.vacuum.2007.03.007.

44 Grenadyorov, A. S., Oskomov, K. V., & Solovyev, A. A. (2018). Effect of deposition conditions on optical properties of a-C:H:SiOx films prepared by plasma-assisted chemical vapor deposition method. Optik (Stuttgart), 172, 107-116. http://dx.doi.org/10.1016/j.ijleo.2018.07.024.

45 Hilbert, J., Mangolini, F., McClimon, J. B., Lukes, J. R., & Carpick, R. W. (2018). Si doping enhances the thermal stability of diamond-like carbon through reductions in carbon-carbon bond length disorder. Carbon, 131, 72-78. http://dx.doi.org/10.1016/j.carbon.2018.01.081.
 

61eaf003a953954ac717ca04 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections