Polímeros: Ciência e Tecnologia
https://www.revistapolimeros.org.br/article/doi/10.1590/0104-1428.20240099
Polímeros: Ciência e Tecnologia
Original Article

Coating based on Montmorillonite, essential oils, and amaranth to preserve mango

Evelyn Erika Pillco Ramos; Maria Cecilia Pacco-Huamani; Sandriane Pizato; Rosalinda Arévalo Pinedo; William Renzo Cortez-Vega; Grethel Teresa Choque Delgado

Downloads: 0
Views: 30

Abstract

This study aimed to evaluate the coating based on Amaranthus flour (AF), montmorillonite, and three essential oils (clove, muña, and matico) to extend the shelf life of minimally processed mango. The mango cubes were divided into four different treatments. T1- control (uncoated mango), T2 (0.3% w/v of clove), T3 (0.3% w/v of muña), and T4 (0.3% w/v of matico). All treatments had 0.6% w/v Amaranth flour and 0.02% w/v montmorillonite (MMT) and were subjected to 5°C for 12 days. Water activity (Aw), pH, Total soluble solids, acidity, weight loss, color, texture, and antimicrobial activity were evaluated for each treatment. Matico treatment maintained pH and had the lowest count of yeast and mold forming units on mango (3.47 log UFC g-1). On the last day of storage, all coating treatments showed less weight loss and favorable results than the control. The matico treatment showed higher efficiency for mango preservation.

 

 

Keywords

amaranthus caudatus, buddleja globose, minthostachys mollis, montmorillonite, syzygium aromaticum

References

1 Gentile, C., Di Gregorio, E., Di Stefano, V., Mannino, G., Perrone, A., Avellone, G., Sortino, G., Inglese, P., & Farina, V. (2019). Food quality and nutraceutical value of nine cultivars of mango (Mangifera indica L.) fruits grown in Mediterranean subtropical environment. Food Chemistry, 277, 471-479. http://doi.org/10.1016/j.foodchem.2018.10.109. PMid:30502173.

2 Lin Aung, Y., Lorjaroenphon, Y., Rumpagaporn, P., Sae-tan, S., & Na Jom, K. (2021). Comparative investigation of combined metabolomics-flavoromics during the ripening of mango (Mangifera indica L.) cv. ‘Nam Dok Mai Si Thong’ and ‘Nam Dok Mai No. 4’. Plants, 10(10), 2198. http://doi.org/10.3390/plants10102198. PMid:34686007.

3 Kumar, N., Pratibha, Upadhyay, A., Trajkovska Petkoska, A., Gniewosz, M., & Kieliszek, M. (2023). Extending the shelf life of mango (Mangifera indica L.) fruits by using edible coating based on xanthan gum and pomegranate peel extract. Journal of Food Measurement and Characterization, 17(2), 1300-1308. http://doi.org/10.1007/s11694-022-01706-6.

4 Liu, X., Xiao, Y., Zi, J., Yan, J., Li, C., Du, C., Wan, J., Wu, H., Zheng, B., Wang, S., & Liang, Q. (2023). Differential effects of low and high-temperature stress on pollen germination and tube length of mango (Mangifera indica L.) genotypes. Scientific Reports, 13(1), 611. http://doi.org/10.1038/s41598-023-27917-5. PMid:36635467.

5 Tiamiyu, Q. O., Adebayo, S. E., & Yusuf, A. A. (2023). Gum Arabic edible coating and its application in preservation of fresh fruits and vegetables: a review. Food Chemistry Advances, 2, 100251. http://doi.org/10.1016/j.focha.2023.100251.

6 Carrasco, P. B., Oliveira, V. S., Paz Gonçalvez, G. C., Gandra, E. A., Mendonça, C. R. B., & Borges, C. D. (2022). Conservation of minimally processed pinhão using chitosan and gelatin coatings. Brazilian Journal of Food Technology, 25, e2021095. http://doi.org/10.1590/1981-6723.09521.

7 Wang, W., Zhang, W., Li, L., Deng, W., Liu, M., & Hu, J. (2023). Biodegradable starch-based packaging films incorporated with polyurethane-encapsulated essential oil microcapsules for sustained food preservation. International Journal of Biological Macromolecules, 235, 123889. http://doi.org/10.1016/j.ijbiomac.2023.123889. PMid:36870661.

8 Salehi, F. (2020). Edible coating of fruits and vegetables using natural gums: a review. International Journal of Fruit Science, 20(2), 570-589. http://doi.org/10.1080/15538362.2020.1746730.

9 Wu, L., Liu, Q., Wang, X., Cao, S., Tang, N., Wang, Q., Lv, G., & Liao, L. (2020). Preparation of two-dimensional nano montmorillonite/stearic acid energy storage composites with excellent stability and heat storage properties. Applied Clay Science, 191, 105614. http://doi.org/10.1016/j.clay.2020.105614.

10 Choque Delgado, G. T., Carlos Tapia, K. V., Pacco Huamani, M. C., & Hamaker, B. R. (2023). Peruvian Andean grains: nutritional, functional properties and industrial uses. Critical Reviews in Food Science and Nutrition, 63(29), 9634-9647. http://doi.org/10.1080/10408398.2022.2073960. PMid:35544604.

11 Fonseca-Florido, H. A., Méndez-Montealvo, G., Velazquez, G., & Gómez-Aldapa, C. A. (2016). Thermal study in the interactions of starches blends: amaranth and achira. Food Hydrocolloids, 61, 640-648. http://doi.org/10.1016/j.foodhyd.2016.06.027.

12 Wang, H., Ma, Y., Liu, L., Liu, Y., & Niu, X. (2022). Incorporation of clove essential oil nanoemulsion in chitosan coating to control Burkholderia gladioli and improve postharvest quality of fresh Tremella fuciformis. Lebensmittel-Wissenschaft + Technologie, 170, 114059. http://doi.org/10.1016/j.lwt.2022.114059.

13 Villar Calero, K. A., Ruiz Pacco, G. A., & Fuertes Ruitón, C. M. (2021). Biopelículas a base de quitosano y aceite esencial de Minthostachys Mollis (muña) con propiedades antioxidante y antimicrobiana. Revista de la Sociedad Química del Perú, 87(4), 309-320. http://doi.org/10.37761/rsqp.v87i4.357.

14 Otoya, V. L. (2020). Considerations for the use and study of the Peruvian “muña” Minthostachys mollis (Benth.) Griseb and Minthostachys setosa (Briq.) Epling. Ethnobotany Research and Applications, 19, 1-9.

15 Vogel, H., Razmilic, I., & González, B. (2004). Matico (Buddleja globosa Hope): evaluación de diferentes accesiones, número de cosechas, humedad del suelo y extracción de nutrientes. Agricultura Técnica (Chillán), 64(4), 413-420. http://doi.org/10.4067/S0365-28072004000400010.

16 AOAC. (2000). AOAC: Official methods of analysis (Vol. 1). Arlington, VA: AOAC International.

17 American Meat Science Association –­ AMSA. (2015). Research guidelines for cookery, sensory evaluation, and instrumental tenderness measurements of meat (2nd ed., Vol. 1). Champaign, IL: AMSA. Retrieved in 2024, September 28, from https://tinyurl.com/y5nrxrbc

18 American Public Health Association – APHA. (2001). Compendium of methods for the microbiological examination of foods. Washington, DC: American Public Health Association.

19 Sánchez Aldana, D., Aguilar, C. N., Contreras-Esquivel, J. C., Souza, M. P., Carneiro-da-Cunha, M. G., & Nevárez-Moorillón, G. V. (2021). Use of a Mexican lime (Citrus aurantifolia Swingle) edible coating to preserve minimally processed mango (Mangifera indica L). Horticulture, Environment and Biotechnology, 62(5), 765-775. http://doi.org/10.1007/s13580-021-00347-w.

20 Ploy, K., & Rungsinee, S. (2022). Effect of Thai herb essential oils incorporated in hydroxypropyl methylcellulose-based nanocomposite coatings on quality of fresh mango stored at ambient temperature. Agriculture and Natural Resources (Bangkok), 56(2), 331-342. http://doi.org/10.34044/j.anres.2022.56.2.11.

21 Handojo, L. A., Shofinita, D., Evelina, G., & Nasution, A. N. (2022). Edible coating development to extend shelf life of mangoes (Mangivera indica L.). IOP Conference Series. Earth and Environmental Science, 980(1), 012046. http://doi.org/10.1088/1755-1315/980/1/012046.

22 Passafiume, R., Tinebra, I., Gaglio, R., Settanni, L., Sortino, G., Allegra, A., & Farina, V. (2022). Fresh-cut mangoes: how to increase shelf life by using neem oil edible coating. Coatings, 12(5), 664. http://doi.org/10.3390/coatings12050664.

23 Gupta, V., Meena, N. K., Sharma, Y. K., & Choudhary, K. (2023). Comparative study of different polysaccharide-based edible coatings on physicochemical attributes and bioactive compounds of mango cv dashehari fruits. Food, 4(1), e55. http://doi.org/10.1002/efd2.55.

24 Yu, K., Xu, J., Zhou, L., Zou, L., & Liu, W. (2021). Effect of chitosan coatings with cinnamon essential oil on postharvest quality of mangoes. Foods, 10(12), 3003. http://doi.org/10.3390/foods10123003. PMid:34945553.

25 Ali, S., Zahid, N., Nawaz, A., Naz, S., Ejaz, S., Ullah, S., & Siddiq, B. (2022). Tragacanth gum coating suppresses the disassembly of cell wall polysaccharides and delays softening of harvested mango (Mangifera indica L.) fruit. International Journal of Biological Macromolecules, 222, 521-532. http://doi.org/10.1016/j.ijbiomac.2022.09.159.

26 Coelho, P. B., Figueiredo Neto, A., Costa, M. S., Pereira Filho, A., Silva, T. D., & Sánchez-Sáenz, C. M. (2021). Application of biodegradable coatings on ‘Tommy Atkins’ mango for export. Dyna, 88(219), 197-202. http://doi.org/10.15446/dyna.v88n219.95148.

27 Santacruz, S., & Hurel, J. C. (2022). Salicylic acid, cinnamaldehyde, and thymol incorporated into cassava starch coatings for mango preservation. Revista Facultad Nacional de Agronomía, 75(3), 10119-10124. http://doi.org/10.15446/rfnam.v75n3.100538.

28 Khaliq, G., Ali, S., Ejaz, S., Abdi, G., Faqir, Y., Ma, J., Siddiqui, M. W., & Ali, A. (2023). γ-Aminobutyric acid is involved in overlapping pathways against chilling injury by modulating glutamate decarboxylase and defense responses in papaya fruit. Frontiers in Plant Science, 14, 1233477. http://doi.org/10.3389/fpls.2023.1233477. PMid:38034576.

29 Lieu, M. D., & Dang, T. K. T. (2021). Improvement of shelf-life of mangoes by chitosan coating enriched with cinnamon oil dissolved in Tween 80 combined with ethanol. Food Bioscience, 44, 101341. http://doi.org/10.1016/j.fbio.2021.101341.

30 Marín, A., Baldwin, E. A., Bai, J., Wood, D., Ference, C., Sun, X., Brecht, J. K., & Plotto, A. (2021). Edible coatings as carriers of antibrowning compounds to maintain appealing appearance of fresh-cut mango. HortTechnology, 31(1), 27-35. http://doi.org/10.21273/HORTTECH04687-20.

31 Mshora, A., Gill, P. P. S., Jawandha, S. K., Sinha, A., & Singh, M. (2022). Effect of chitosan coatings on physico-chemical and enzymatic activities in mango cv Dashehari stored at low temperature. Journal of Horticultural Sciences, 17(2), 381-387. http://doi.org/10.24154/jhs.v17i2.1015.

32 Sarria, S. D., Zapata, J. I. H., & Bermúdez, A. A. (2023). Edible coatings with avocado oil on the quality of ‘Tommy Atkins’ mangoes. Ciência e Agrotecnologia, 47, e001423. http://doi.org/10.1590/1413-7054202347001423.

33 Hernández-Guerrero, S. E., Balois-Morales, R., Palomino-Hermosillo, Y. A., López-Guzmán, G. G., Berumen-Varela, G., Bautista-Rosales, P. U., & Alejo-Santiago, G. (2020). Novel edible coating of starch-based stenospermocarpic mango prolongs the shelf life of mango “ataulfo” fruit. Journal of Food Quality, 2020, e1320357. http://doi.org/10.1155/2020/1320357.

34 Almeida, M. M. M., Pizato, S., Basaglia, R. R., Pacco-Huamani, M. C., Pinedo, R. A., & Cortez-Vega, W. R. (2024). Effect of tragacanth gum (Astragalus gummifer) and melaleuca essential oil to extend the shelf life of minimally processed pineapples. Acta Scientiarum. Technology, 46(1), e65407. http://doi.org/10.4025/actascitechnol.v46i1.65407.

35 Wang, T., Zhai, X., Huang, X., Li, Z., Zhang, X., Zou, X., & Shi, J. (2023). Effect of different coating methods on coating quality and mango preservation. Food Packaging and Shelf Life, 39, 101133. http://doi.org/10.1016/j.fpsl.2023.101133.

36 Chuacharoen, T., & Sabliov, C. M. (2022). Development of coating material by incorporating curcumin-loaded zein nanoparticles to maintain the quality of mango (Mangifera indica L. cv. Nam Dokmai). Journal of Agriculture and Food Research, 10, 100444. http://doi.org/10.1016/j.jafr.2022.100444.

37 Pizato, S., Chevalier, R. C., Santos, M. F., Costa, T. S., Arévalo Pinedo, R., & Cortez Vega, W. R. (2019). Evaluation of the shelf-life extension of fresh-cut pineapple (Smooth cayenne) by application of different edible coatings. British Food Journal, 121(7), 1592-1604. http://doi.org/10.1108/BFJ-11-2018-0780.

38 Pizato, S., Vega-Herrera, S. S., Chevalier, R. C., Pinedo, R. A., & Cortez-Vega, W. R. (2022). Impact of chitosan coatings enriched with clove essential oil on quality of minimally processed strawberries. Brazilian Archives of Biology and Technology, 65, e22210278. http://doi.org/10.1590/1678-4324-2022210278.

39 Rojas-Graü, M. A., Tapia, M. S., Rodríguez, F. J., Carmona, A. J., & Martin-Belloso, O. (2007). Alginate and gellan-based edible coatings as carriers of antibrowning agents applied on fresh-cut Fuji apples. Food Hydrocolloids, 21(1), 118-127. http://doi.org/10.1016/j.foodhyd.2006.03.001.

40 Li, Y., Kong, D., & Wu, H. (2013). Analysis and evaluation of essential oil components of cinnamon barks using GC–MS and FTIR spectroscopy. Industrial Crops and Products, 41, 269-278. http://doi.org/10.1016/j.indcrop.2012.04.056.

41 Barbosa, R. F. S., Yudice, E. D. C., Mitra, S. K., & Rosa, D. S. (2021). Characterization of Rosewood and Cinnamon Cassia essential oil polymeric capsules: stability, loading efficiency, release rate, and antimicrobial properties. Food Control, 121, 107605. http://doi.org/10.1016/j.foodcont.2020.107605.

42 Nandhavathy, G., Dharini, V., Anand Babu, P., Nambiar, R. B., Periyar Selvam, S., Sadiku, E. R., & Mahesh Kumar, M. (2021). Determination of antifungal activities of essential oils incorporated-pomegranate peel fibers reinforced-polyvinyl alcohol biocomposite film against mango postharvest pathogens. Materials Today: Proceedings, 38(Part 2), 923-927. http://doi.org/10.1016/j.matpr.2020.05.384.

43 Cai, C., Ma, R., Duan, M., Deng, Y., Liu, T., & Lu, D. (2020). Effect of starch film containing thyme essential oil microcapsules on physicochemical activity of mango. Lebensmittel-Wissenschaft + Technologie, 131, 109700. http://doi.org/10.1016/j.lwt.2020.109700.
 

6825e77ca953952d06737414 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections