Polímeros: Ciência e Tecnologia
https://www.revistapolimeros.org.br/article/doi/10.1590/0104-1428.20240077
Polímeros: Ciência e Tecnologia
Original Article

Magnesium layered double hydroxide nanofiller in PMMA exposed to gamma irradiation

Dandara Luz Souza de Oliveira; Amanda Damasceno Leão; Fábio de Oliveira da Silva Ribeiro; Alyne Rodrigues de Araújo; Pietro Paolo Jorge Correia de Oliveira e Silva; José Lamartine Soares-Sobrinho; Elmo Silvano de Araújo; Renata Francisca da Silva Santos; Kátia Aparecida da Silva Aquino

Downloads: 0
Views: 40

Abstract

Poly(methyl methacrylate) (PMMA) is a polymer that can be used in applications requiring its exposition to gamma radiation, nevertheless, the radiation induces main chain scission backbone, leading to modification in some properties. Therefore, using materials such as layered double hydroxide (LDH), was evaluated as a new radiation shielding agent. This work synthesized LDH and added to PMMA by an in-situ polymerization method. Viscosimetric analysis showed that LDH at 0.25 wt% concentration promotes polymer radiolytic protection of 90% against damage caused by gamma radiation. The topographic images obtained by AFM revealed increasing PMMA/LDH film roughness, which impacted the lower film transmittance. The combined effect of LDH and gamma radiation interferes with the degradation process of PMMA, promoting reduced rigidity, greater mobility of polymer chains, and lower optical gap energy. Thus, these results open a promising path for using LDH as additives in polymers exposed to gamma radiation.

 

 

Keywords

gamma irradiation, layered double hydroxide, poly(methyl methacrylate), radiolytic protection

References

1 Leão, A. D., França, L. M., Cunha, C. N. L. C., Marinho, F. A., Soares, M. F. L., & Soares-Sobrinho, J. L. (2019). In-line monitoring of layered double hydroxide synthesis and insights on formation mechanism and kinetics. Applied Clay Science, 179, 105130. http://doi.org/10.1016/j.clay.2019.105130.

2 Leão, A. D., Alvarez-Lorenzo, C., & Soares-Sobrinho, J. L. (2020). One-pot synthesis of the organomodified layered double hydroxides - glibenclamide biocompatible nanoparticles. Colloids and Surfaces. B, Biointerfaces, 193, 111055. http://doi.org/10.1016/j.colsurfb.2020.111055. PMid:32403034.

3 Nagendra, B., Mohan, K., & Gowd, E. B. (2015). Polypropylene/layered double hydroxide (LDH) nanocomposites: influence of LDH particle size on the crystallization behavior of polypropylene. ACS Applied Materials & Interfaces, 7(23), 12399-12410. http://doi.org/10.1021/am5075826. PMid:25741910.

4 Hoxha, A., Gillam, D. G., Agha, A., Karpukhina, N., Bushby, A. J., & Patel, M. P. (2020). Novel fluoride rechargeable dental composites containing MgAl and CaAl layered double hydroxide (LDH). Dental Materials, 36(8), 973-986. http://doi.org/10.1016/j.dental.2020.04.011. PMid:32536588.

5 Manzi-Nshuti, C., Wang, D., Hossenlopp, J. M., & Wilkie, C. A. (2008). Aluminum-containing layered double hydroxides: the thermal, mechanical, and fire properties of (nano)composites of poly(methyl methacrylate). Journal of Materials Chemistry, 18(26), 3091-3102. http://doi.org/10.1039/b802553c.

6 Charlesby, A. (1960). Atomic radiation and polymers. Oxford: Pergamon Press. http://doi.org/10.1016/C2013-0-07861-9.

7 Aquino, K. A. S., Araújo, E. S., & Guedes, S. M. L. (2010). Influence of a hindered amine stabilizer on optical and mechanical properties of poly(methyl methacrylate) exposed to gamma irradiation. Journal of Applied Polymer Science, 116(2), 748-753. http://doi.org/10.1002/app.31544.

8 Garcia, O. P., Albuquerque, M. C. C., Aquino, K. A. S., Araujo, P. L. B., & Araujo, E. S. (2015). Use of lead (II) sulfide nanoparticles as stabilizer for PMMA exposed to gamma irradiation. Materials Research, 18(2), 365-372. http://doi.org/10.1590/1516-1439.330214.

9 Albuquerque, M. C. C., Garcia, O. P., Aquino, K. A. D. S., Araujo, P. L. B., & Araujo, E. S. (2015). Stibnite nanoparticles as a new stabilizer for poly(methyl methacrylate) exposed to gamma irradiation. Materials Research, 18(5), 978-983. http://doi.org/10.1590/1516-1439.000814.

10 Chen, H., Mousty, C., Cosnier, S., Silveira, C., Moura, J. J. G., & Almeida, M. G. (2007). Highly sensitive nitrite biosensor based on the electrical wiring of nitrite reductase by [ZnCr-AQS] LDH. Electrochemistry Communications, 9(9), 2240-2245. http://doi.org/10.1016/j.elecom.2007.05.030.

11 Leão, A. D., Silva, L. A., Ribeiro, F. O. S., Silva, D. A., França, E. J., Aquino, K. A. S., & Soares-Sobrinho, J. L. (2021). Influence of nonmodified layered double hydroxide (LDH) metal constituents in PMMA/LDH nanocomposites. Journal of Inorganic and Organometallic Polymers and Materials, 31(2), 836-850. http://doi.org/10.1007/s10904-020-01742-z.

12 Lu, X., Wang, C., & Wei, Y. (2009). One‐dimensional composite nanomaterials: synthesis by electrospinning and their applications. Small, 5(21), 2349-2370. http://doi.org/10.1002/smll.200900445. PMid:19771565.

13 Ding, Y., Gui, Z., Zhu, J., Hu, Y., & Wang, Z. (2008). Exfoliated poly(methyl methacrylate)/MgFe-layered double hydroxide nanocomposites with small inorganic loading and enhanced properties. Materials Research Bulletin, 43(12), 3212-3220. http://doi.org/10.1016/j.materresbull.2008.03.002.

14 Wang, Q., Undrell, J. P., Gao, Y., Cai, G., Buffet, J.-C., Wilkie, C. A., & O’Hare, D. (2013). Synthesis of flame-retardant polypropylene/LDH borate nanocomposites. Macromolecules, 46(15), 6145-6150. http://doi.org/10.1021/ma401133s.

15 Demir, M. M., Memesa, M., Castignolles, P., & Wegner, G. (2006). PMMA/Zinc oxide nanocomposites prepared by in-situ bulk polymerization. Macromolecular Rapid Communications, 27(10), 763-770. http://doi.org/10.1002/marc.200500870.

16 Li, B., Hu, Y., Liu, J., Chen, Z., & Fan, W. (2003). Preparation of poly(methyl methacrylate)/LDH nanocomposite by exfoliation-adsorption process. Colloid & Polymer Science, 281(10), 998-1001. http://doi.org/10.1007/s00396-003-0874-5.

17 Miyata, S., & Okada, A. (1977). Synthesis of hydrotalcite-like compounds and their physico-chemical properties– the systems Mg2+-Al3+-SO2 and Mg2+-Al3+-CrO2. Clays and Clay Minerals, 25(1), 14-18. http://doi.org/10.1346/CCMN.1977.0250103.

18 Mayo-Pedrosa, M., Alvarez-Lorenzo, C., Lacík, I., Martinez-Pacheco, R., & Concheiro, A. (2007). Sustained release pellets based on poly(N-isopropyl acrylamide): matrix and in situ photopolymerization-coated systems. Journal of Pharmaceutical Sciences, 96(1), 93-105. http://doi.org/10.1002/jps.20708. PMid:16967440.

19 Schoff, C. K. (1999). Concentration dependence of the viscosity of dilute polymer solutions: Huggins and Schulz-Blaschke constants. In J. Brandrup, E. H. Immergut & E. A. Grulke (Eds.), Polymer handbook (pp. 265-289). New York: Wiley-Interscience. http://doi.org/10.1002/0471532053.bra053.

20 Huggins, M. L. (1942). The viscosity of dilute solutions of long-chain molecules. IV. Dependence on concentration. Journal of the American Chemical Society, 64(11), 2716-2718. http://doi.org/10.1021/ja01263a056.

21 Solomon, O. F., & Ciutǎ, I. Z. (1962). Détermination de la viscosité intrinsèque de solutions de polymères par une simple détermination de la viscosité. Journal of Applied Polymer Science, 6(24), 683-686. http://doi.org/10.1002/app.1962.070062414.

22 Qian, J. W., Qi, G. R., & Cheng, R. S. (1997). Association of ethylene-vinylacetate copolymer in dilute solutions-I. Solvent, concentration and annealing temperature effect. European Polymer Journal, 33(8), 1263-1265. http://doi.org/10.1016/S0014-3057(96)00264-9.

23 Ubale, A. U., Sangawar, V. S., & Kulkarni, D. K. (2007). Size dependent optical characteristics of chemically deposited nanostructured ZnS thin films. Bulletin of Materials Science, 30(2), 147-151. http://doi.org/10.1007/s12034-007-0026-5.

24 Davis, E. A., & Mott, N. F. (1970). Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors. Philosophical Magazine, 22(179), 903-922. http://doi.org/10.1080/14786437008221061.

25 Guo, M., & Du, J. (2012). First-principles study of electronic structures and optical properties of Cu, Ag, and Au-doped anatase TiO2. Physica B, Condensed Matter, 407(6), 1003-1007. http://doi.org/10.1016/j.physb.2011.12.128.

26 Pankove, J. I., & Kiewit, D. A. (1972). Optical processes in semiconductors. Journal of the Electrochemical Society, 119(5), 156C. http://doi.org/10.1149/1.2404256.

27 Booth, H. (1992). Review of Spectrometric identification of organic compounds, by R. M. Silverstein, G. C. Bassler, & T. C. Morrill. Magnetic Resonance in Chemistry, 30(4), 364. http://doi.org/10.1002/mrc.1260300417.

28 Guillet, J. E. (Ed.). (1985). Polymer photophysics and photochemistry: an introduction to the study of photoprocesses in macromolecules. Cambridge: Cambridge University Press. http://doi.org/10.1002/zfch.19860261131.

29 Brandrup, J., & Immergut, E. H. (Eds.). (1989). Polymer handbook. New York: Wiley-Interscience. http://doi.org/10.1002/actp.1990.010410614.

30 Lovell, P. A. (1989). Dilute solution viscometry. In G. Allen & J. C. Bevington (Eds.), Comprehensive polymer science and supplements (pp. 173-197). New York: Elsevier. http://doi.org/10.1016/B978-0-08-096701-1.00009-4.

31 Bel, T., Arslan, C., & Baydogan, N. (2019). Radiation shielding properties of poly (methyl methacrylate) / colemanite composite for the use in mixed irradiation fields of neutrons and gamma rays. Materials Chemistry and Physics, 221, 58-67. http://doi.org/10.1016/j.matchemphys.2018.09.014.

32 Aquino, K. A. S., & Araújo, E. S. (2008). Effects of a hindered amine stabilizer (HAS) on radiolytic and thermal stability of poly (methyl methacrylate). Journal of Applied Polymer Science, 110(1), 401-407. http://doi.org/10.1002/app.28465.

33 Aquino, K. A. S., Oliveira, D. L. S., Santos, R. F. S., & Araújo, E. S. (2023). Study of commercial additive effects on poly(methyl methacrylate) exposed to gamma irradiation by viscosimetric analysis. Materials Research, 26, e20230382. http://doi.org/10.1590/1980-5373-mr-2023-0382.

34 Koning, C., Duin, M. V., Pagnoulle, C., & Jerome, R. (1998). Strategies for compatibilization of polymer blends. Progress in Polymer Science, 23(4), 707-757. http://doi.org/10.1016/S0079-6700(97)00054-3.

35 Wang, X., Huang, J., Fan, W., & Lu, H. (2015). Identification of green tea varieties and fast quantification of total polyphenols by near-infrared spectroscopy and ultraviolet-visible spectroscopy with chemometric algorithms. Analytical Methods, 7(7), 787-792. http://doi.org/10.1039/C4AY02106A.

36 Al-Kadhemy, M. F. H., Saeed, A. A., Khaleel, R. I., & Al-Nuaimi, F. J. K. (2017). Effect of gamma ray on optical characteristics of (PMMA/PS) polymer blends. Journal of Theoretical and Applied Physics, 11(3), 201-207. http://doi.org/10.1007/s40094-017-0259-7.

37 Aziz, S. B., Rasheed, M. A., Hussein, A. M., & Ahmed, H. M. (2017). Fabrication of polymer blend composites based on PVA-PVP:(Ag2S)x (0.01 ≤ x ≤ 0.03) with small optical band gaps: structural and optical properties. Materials Science in Semiconductor Processing, 71, 197-203. http://doi.org/10.1016/j.mssp.2017.05.035.

38 Omar, M. A. (1987). Elementary solid state physics: principles and applications. Reading: Addison-Wesley Publishing Company.

39 Tahir, K. J. (2017). Effect of gamma irradiation on optical properties of CdS thin films. Journal of Kerbala University, 15(1), 49-55. Retrieved in 2024, August 13, from https://www.iasj.net/iasj/article/122592

40 Tauc, J. (Ed.). (1974). Amorphous and liquid semiconductors. London: Plenum Publishing Company Ltd. http://doi.org/10.1007/978-1-4615-8705-7.

41 Ersen, Y. (2022). Compatibilizer effect on optical properties of immiscible PMMA/PS blends. International Journal of Pure and Applied Sciences, 8(1), 149-156. http://doi.org/10.29132/ijpas.1054866.

42 Mansour, A. F., Mansour, S. F., & Abdo, M. A. (2015). Improvement of structural and optical properties of ZnO/PVA nanocomposites. IOSR Journal of Applied Physics, 7(2), 60-69. http://doi.org/10.9790/4861-07226069.
 

6825e489a953952beb250e93 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections