Thermal behavior of NBR vulcanizates activated with plant-extract-derived magnesium oxidea
Arianne Aparecida da Silva; Ana Maria Furtado de Sousa; Cristina Russi Guimarães Furtado; Nakédia M. F. Carvalho
Abstract
Keywords
References
1 Lou, W., Zhang, W., Wang, H., Jin, T., & Liu, X. (2018). Influence of hydraulic oil on degradation behavior of nitrile rubber O-rings at elevated temperature.
2 Wei, X., Wu, H., Zhang, L., Zhang, S.-y., Xiao, Y., & Luo, T.-y. (2018). Failure analysis of nitrile rubber o-rings static sealing for packaging barrel.
3 Chopra, A., & Singh, S. (2022). Major application and impact after modified bituminous with nitrile rubber and thermoset: an analysis.
4 Ghamarpoor, R., & Jamshidi, M. (2022). Preparation of superhydrophobic/superoleophilic nitrile rubber (NBR) nanocomposites contained silanized nano silica for efficient oil/water separation.
5 Zou, Y., Sun, Y., He, J., Tang, Z., Zhu, L., Luo, Y., & Liu, F. (2016). Enhancing mechanical properties of styrene–butadiene rubber/silica nanocomposites by in situ interfacial modification with a novel rare-earth complex.
6 Mostoni, S., Milana, P., Di Credico, B., D’Arienzo, M., & Scotti, R. (2019). Zinc-based curing activators: new trends for reducing zinc content in rubber vulcanization process.
7 Roy, K., Alam, M. N., Mandal, S. K., & Debnath, S. C. (2015). Preparation of zinc‐oxide‐free natural rubber nanocomposites using nanostructured magnesium oxide as cure activator.
8 Zanchet, A., Sousa, F. D. B., Crespo, J. S., & Scuracchio, C. H. (2018). Activator from sugar cane as a green alternative to conventional vulcanization additives.
9 Silva, A. A., Rocha, E. B. D., Furtado, C. R. G., Sousa, A. M. F., & Carvalho, N. M. F. (2021). Magnesium oxide biosynthesized with
10 Przybyszewska, M., Zaborski, M., Jakubowski, B., & Zawadiak, J. (2009). Zinc chelates as new activators for sulphur vulcanization of acrylonitrile-butadiene elastomer.
11 Heideman, G., Noordermeer, J. W. M., Datta, R. N., & Van Baarle, B. (2003). Modified clays as activator in sulphur vulcanisation: A novel approach to reduce zinc oxide levels in rubber compounds.
12 Heideman, G., Noordermeer, J. W. M., Datta, R. N., & Van Baarle, B. (2004). Zinc loaded clay as activator in sulfur vulcanization: a new route for zinc oxide reduction in rubber compounds.
13 Moresco, S., Giovanela, M., Carli, L. N., & Crespo, J. S. (2016). Development of passenger tire treads: reduction in zinc content and utilization of a bio-based lubricant.
14 Zanchet, A., Demori, R., Sousa, F. D. B., Ornaghi, H. L., Jr., Schiavo, L. S. A., & Scuracchio, C. H. (2019). Sugar cane as an alternative green activator to conventional vulcanization additives in natural rubber compounds: thermal degradation study.
15 Alam, M. N., Kumar, V., & Park, S.-S. (2022). Advances in rubber compounds using ZnO and MgO as co-cure activators.
16 Silva, A. A., Rocha, E. B. D., Linhares, F. N., Sousa, A. M. F., Carvalho, N. M., & Furtado, C. R. G. (2022). Replacement of ZnO by ecofriendly synthesized MgO in the NBR vulcanization.
17 Pilarska, A. A., Klapiszewski, Ł., & Jesionowski, T. (2017). Recent development in the synthesis, modification and application of Mg(OH)2 and MgO: A review.
18 Hornak, J., Trnka, P., Kadlec, P., Michal, O., Mentlík, V., Šutta, P., Csányi, G. M., & Tamus, Z. Á. (2018). Magnesium oxide nanoparticles: dielectric properties, surface functionalization and improvement of epoxy-based composites insulating properties.
19 Flynn, J. H., & Wall, L. A. (1966). A quick, direct method for the determination of activation energy from thermogravimetric data.
20 Rajeshwari, P. (2016). Kinetic analysis of the non-isothermal degradation of high-density polyethylene filled with multi-wall carbon nanotubes.
21 Erbetta, C. D. C., Azevedo, R. C. S., Andrade, K. S., Silva, M. E. S. R., Freitas, R. F. S., & Sousa, R. G. (2017). Characterization and lifetime estimation of high density polyethylene containing a prodegradant agent.
22 Shuhaimi, N. H. H., Ishak, N. S., Othman, N., Ismail, H., & Sasidharan, S. (2014). Effect of different types of vulcanization systems on the mechanical properties of natural rubber vulcanizates in the presence of oil palm leaves-based antioxidant.
23 Sun, J., Wang, X., & Zong, C. (2020). Evaluation of hot air degradation activation energy of carbon black filled hydrogenated nitrile butadiene rubber using Flynn-Wall-Ozawa approach.
24 Zhang, J., Li, J., Liu, M., Zhao, Y., & Wang, S. (2016). Thermal decomposition kinetics and mechanism of low-temperature hydrogenated acrylonitrile butadiene rubber composites with sodium methacrylate.
25 Hwang, W.-G., Wei, K.-H., & Wu, C.-M. (2004). Mechanical, thermal, and barrier properties of NBR/organosilicate nanocomposites.
26 Oliveira, I. T., Pacheco, É. B. A. V., Visconte, L. L. Y., Oliveira, M. R., & Rubinger, M. M. M. (2010). Effect of a new accelerator of vulcanization in the rheometric properties of nitrile rubber compositions with different AN amounts.
27 Lee, Y. S., & Ha, K. (2021). Effects of acrylonitrile content on thermal characteristics and thermal aging properties of carbon black-filled NBR composite.
28 Hong, I. K., & Lee, S. (2013). Cure kinetics and modeling the reaction of silicone rubber.
29 Plota, A., & Masek, A. (2020). Lifetime prediction methods for degradable polymeric materials—A short review.
30 Liu, S., Yu, J., Bikane, K., Chen, T., Ma, C., Wang, B., & Sun, L. (2018). Rubber pyrolysis: kinetic modeling and vulcanization effects.
31 Ren, T., Wan, C., Song, P., Rodrigue, D., Zhang, Y., & Wang, S. (2024). Thermo-oxidative degradation behavior of natural rubber vulcanized by different curing systems.
32 Krishnamurthy, S., & Balakrishnan, P. (2019). Dynamic mechanical behavior, solvent resistance and thermal degradation of nitrile rubber composites with carbon black‐halloysite nanotube hybrid fillers.
33 Han, R., Wu, Y., Quan, X., & Niu, K. (2020). Effects of crosslinking densities on mechanical properties of nitrile rubber composites in thermal oxidative aging environment.
34 Mengistu, T., & Pazur, R. J. (2021). The thermal oxidation of hydrogenated acrylonitrile-co-butadiene rubber from ambient to 150°C.
35 Senthilvel, K., Pasupathy, J., Kumar, A. A. J., Rathinam, N., & Prabu, B. (2022). Investigation on the ageing properties of nitrile rubber reinforced halloysite nanotubes/carbon black hybrid composites.
36 Meier, U. (2006). A note on the power of Fisher’s least significant difference procedure.