Polímeros: Ciência e Tecnologia
https://www.revistapolimeros.org.br/article/doi/10.1590/0104-1428.20240072
Polímeros: Ciência e Tecnologia
Original Article

Thermal behavior of NBR vulcanizates activated with plant-extract-derived magnesium oxidea

Arianne Aparecida da Silva; Ana Maria Furtado de Sousa; Cristina Russi Guimarães Furtado; Nakédia M. F. Carvalho

Downloads: 0
Views: 32

Abstract

This study compares the thermal degradation and aging resistance of NBR compounds activated with ZnO or MgO-green synthesized with the assistance of Camellia sinensis extract. Thermal degradation was studied using the Flynn-Wall-Ozawa method. Aging resistance was investigated by the changes in crosslink density and mechanical properties before and after the samples are exposed in a forced-air oven at 100 °C/72 h. The activation energies for NBR compounds with MgO-green and ZnO are, respectively, 220 kJ mol-1 and 700–200 kJ mol-1. After oxidative-thermal aging, the crosslink density of NBR compounds goes up by 24% with MgO-green and 120% with ZnO. Consequently, the changes in hardness and tensile properties of the NBR with MgO-green are more subtle than those observed with ZnO. Based on Fisher's minimum significant difference procedure, the data analysis shows that MgO-green can be used instead of ZnO as an activator in the vulcanization of NBR.

 

 

Keywords

activator, green magnesium oxide, NBR, thermal behavior, zinc oxide

References

1 Lou, W., Zhang, W., Wang, H., Jin, T., & Liu, X. (2018). Influence of hydraulic oil on degradation behavior of nitrile rubber O-rings at elevated temperature. Engineering Failure Analysis, 92, 1-11. http://doi.org/10.1016/j.engfailanal.2018.05.006.

2 Wei, X., Wu, H., Zhang, L., Zhang, S.-y., Xiao, Y., & Luo, T.-y. (2018). Failure analysis of nitrile rubber o-rings static sealing for packaging barrel. Journal of Failure Analysis and Prevention, 18(3), 628-634. http://doi.org/10.1007/s11668-018-0451-3.

3 Chopra, A., & Singh, S. (2022). Major application and impact after modified bituminous with nitrile rubber and thermoset: an analysis. Materials Today: Proceedings, 51(Pt 1), 977-987. http://doi.org/10.1016/j.matpr.2021.07.021.

4 Ghamarpoor, R., & Jamshidi, M. (2022). Preparation of superhydrophobic/superoleophilic nitrile rubber (NBR) nanocomposites contained silanized nano silica for efficient oil/water separation. Separation and Purification Technology, 291, 120854. http://doi.org/10.1016/j.seppur.2022.120854.

5 Zou, Y., Sun, Y., He, J., Tang, Z., Zhu, L., Luo, Y., & Liu, F. (2016). Enhancing mechanical properties of styrene–butadiene rubber/silica nanocomposites by in situ interfacial modification with a novel rare-earth complex. Composites. Part A, Applied Science and Manufacturing, 87, 297-309. http://doi.org/10.1016/j.compositesa.2016.05.006.

6 Mostoni, S., Milana, P., Di Credico, B., D’Arienzo, M., & Scotti, R. (2019). Zinc-based curing activators: new trends for reducing zinc content in rubber vulcanization process. Catalysts, 9(8), 664. http://doi.org/10.3390/catal9080664.

7 Roy, K., Alam, M. N., Mandal, S. K., & Debnath, S. C. (2015). Preparation of zinc‐oxide‐free natural rubber nanocomposites using nanostructured magnesium oxide as cure activator. Journal of Applied Polymer Science, 132(43), app.42705. http://doi.org/10.1002/app.42705.

8 Zanchet, A., Sousa, F. D. B., Crespo, J. S., & Scuracchio, C. H. (2018). Activator from sugar cane as a green alternative to conventional vulcanization additives. Journal of Cleaner Production, 174, 437-446. http://doi.org/10.1016/j.jclepro.2017.10.329.

9 Silva, A. A., Rocha, E. B. D., Furtado, C. R. G., Sousa, A. M. F., & Carvalho, N. M. F. (2021). Magnesium oxide biosynthesized with Camellia sinensis extract as activator in nitrile rubber vulcanization. Polymer Bulletin, 78(11), 6205-6219. http://doi.org/10.1007/s00289-020-03430-x.

10 Przybyszewska, M., Zaborski, M., Jakubowski, B., & Zawadiak, J. (2009). Zinc chelates as new activators for sulphur vulcanization of acrylonitrile-butadiene elastomer. Express Polymer Letters, 3(4), 256-266. http://doi.org/10.3144/expresspolymlett.2009.32.

11 Heideman, G., Noordermeer, J. W. M., Datta, R. N., & Van Baarle, B. (2003). Modified clays as activator in sulphur vulcanisation: A novel approach to reduce zinc oxide levels in rubber compounds. Kautschuk und Gummi, Kunststoffe, 56(12), 650.

12 Heideman, G., Noordermeer, J. W. M., Datta, R. N., & Van Baarle, B. (2004). Zinc loaded clay as activator in sulfur vulcanization: a new route for zinc oxide reduction in rubber compounds. Rubber Chemistry and Technology, 77(2), 336-355. http://doi.org/10.5254/1.3547827.

13 Moresco, S., Giovanela, M., Carli, L. N., & Crespo, J. S. (2016). Development of passenger tire treads: reduction in zinc content and utilization of a bio-based lubricant. Journal of Cleaner Production, 117, 199-206. http://doi.org/10.1016/j.jclepro.2016.01.013.

14 Zanchet, A., Demori, R., Sousa, F. D. B., Ornaghi, H. L., Jr., Schiavo, L. S. A., & Scuracchio, C. H. (2019). Sugar cane as an alternative green activator to conventional vulcanization additives in natural rubber compounds: thermal degradation study. Journal of Cleaner Production, 207, 248-260. http://doi.org/10.1016/j.jclepro.2018.09.203.

15 Alam, M. N., Kumar, V., & Park, S.-S. (2022). Advances in rubber compounds using ZnO and MgO as co-cure activators. Polymers, 14(23), 5289. http://doi.org/10.3390/polym14235289. PMid:36501682.

16 Silva, A. A., Rocha, E. B. D., Linhares, F. N., Sousa, A. M. F., Carvalho, N. M., & Furtado, C. R. G. (2022). Replacement of ZnO by ecofriendly synthesized MgO in the NBR vulcanization. Polymer Bulletin, 79(10), 8535-8549. http://doi.org/10.1007/s00289-021-03921-5.

17 Pilarska, A. A., Klapiszewski, Ł., & Jesionowski, T. (2017). Recent development in the synthesis, modification and application of Mg(OH)2 and MgO: A review. Powder Technology, 319, 373-407. http://doi.org/10.1016/j.powtec.2017.07.009.

18 Hornak, J., Trnka, P., Kadlec, P., Michal, O., Mentlík, V., Šutta, P., Csányi, G. M., & Tamus, Z. Á. (2018). Magnesium oxide nanoparticles: dielectric properties, surface functionalization and improvement of epoxy-based composites insulating properties. Nanomaterials (Basel, Switzerland), 8(6), 381. http://doi.org/10.3390/nano8060381. PMid:29848967.

19 Flynn, J. H., & Wall, L. A. (1966). A quick, direct method for the determination of activation energy from thermogravimetric data. Journal of Polymer Science. Part B: Polymer Letters, 4(5), 323-326. http://doi.org/10.1002/pol.1966.110040504.

20 Rajeshwari, P. (2016). Kinetic analysis of the non-isothermal degradation of high-density polyethylene filled with multi-wall carbon nanotubes. Journal of Thermal Analysis and Calorimetry, 123(2), 1523-1544. http://doi.org/10.1007/s10973-015-5021-2.

21 Erbetta, C. D. C., Azevedo, R. C. S., Andrade, K. S., Silva, M. E. S. R., Freitas, R. F. S., & Sousa, R. G. (2017). Characterization and lifetime estimation of high density polyethylene containing a prodegradant agent. Materials Sciences and Applications, 8(13), 979-991. http://doi.org/10.4236/msa.2017.813072.

22 Shuhaimi, N. H. H., Ishak, N. S., Othman, N., Ismail, H., & Sasidharan, S. (2014). Effect of different types of vulcanization systems on the mechanical properties of natural rubber vulcanizates in the presence of oil palm leaves-based antioxidant. Journal of Elastomers and Plastics, 46(8), 747-764. http://doi.org/10.1177/0095244313489910.

23 Sun, J., Wang, X., & Zong, C. (2020). Evaluation of hot air degradation activation energy of carbon black filled hydrogenated nitrile butadiene rubber using Flynn-Wall-Ozawa approach. IOP Conference Series: Earth and Environmental Science, 514, 052002. http://doi.org/10.1088/1755-1315/514/5/052002.

24 Zhang, J., Li, J., Liu, M., Zhao, Y., & Wang, S. (2016). Thermal decomposition kinetics and mechanism of low-temperature hydrogenated acrylonitrile butadiene rubber composites with sodium methacrylate. Chemical Research in Chinese Universities, 32(6), 1045-1051. http://doi.org/10.1007/s40242-016-6148-9.

25 Hwang, W.-G., Wei, K.-H., & Wu, C.-M. (2004). Mechanical, thermal, and barrier properties of NBR/organosilicate nanocomposites. Polymer Engineering and Science, 44(11), 2117-2124. http://doi.org/10.1002/pen.20217.

26 Oliveira, I. T., Pacheco, É. B. A. V., Visconte, L. L. Y., Oliveira, M. R., & Rubinger, M. M. M. (2010). Effect of a new accelerator of vulcanization in the rheometric properties of nitrile rubber compositions with different AN amounts. Polímeros: Ciência e Tecnologia, 20(5), 366-370. http://doi.org/10.1590/S0104-14282010005000059.

27 Lee, Y. S., & Ha, K. (2021). Effects of acrylonitrile content on thermal characteristics and thermal aging properties of carbon black-filled NBR composite. Journal of Elastomers and Plastics, 53(5), 402-416. http://doi.org/10.1177/0095244320941243.

28 Hong, I. K., & Lee, S. (2013). Cure kinetics and modeling the reaction of silicone rubber. Journal of Industrial and Engineering Chemistry, 19(1), 42-47. http://doi.org/10.1016/j.jiec.2012.05.006.

29 Plota, A., & Masek, A. (2020). Lifetime prediction methods for degradable polymeric materials—A short review. Materials, 13(20), 4507. http://doi.org/10.3390/ma13204507

30 Liu, S., Yu, J., Bikane, K., Chen, T., Ma, C., Wang, B., & Sun, L. (2018). Rubber pyrolysis: kinetic modeling and vulcanization effects. Energy, 155, 215-225. http://doi.org/10.1016/j.energy.2018.04.146.

31 Ren, T., Wan, C., Song, P., Rodrigue, D., Zhang, Y., & Wang, S. (2024). Thermo-oxidative degradation behavior of natural rubber vulcanized by different curing systems. Chemical Engineering Science, 295, 120147. http://doi.org/10.1016/j.ces.2024.120147.

32 Krishnamurthy, S., & Balakrishnan, P. (2019). Dynamic mechanical behavior, solvent resistance and thermal degradation of nitrile rubber composites with carbon black‐halloysite nanotube hybrid fillers. Polymer Composites, 40(S2), E1612-E1621. http://doi.org/10.1002/pc.25101.

33 Han, R., Wu, Y., Quan, X., & Niu, K. (2020). Effects of crosslinking densities on mechanical properties of nitrile rubber composites in thermal oxidative aging environment. Journal of Applied Polymer Science, 137(36), 49076. http://doi.org/10.1002/app.49076.

34 Mengistu, T., & Pazur, R. J. (2021). The thermal oxidation of hydrogenated acrylonitrile-co-butadiene rubber from ambient to 150°C. Polymer Degradation & Stability, 188, 109574. http://doi.org/10.1016/j.polymdegradstab.2021.109574.

35 Senthilvel, K., Pasupathy, J., Kumar, A. A. J., Rathinam, N., & Prabu, B. (2022). Investigation on the ageing properties of nitrile rubber reinforced halloysite nanotubes/carbon black hybrid composites. Materials Today: Proceedings, 68(Pt 6), 2665-2675. http://doi.org/10.1016/j.matpr.2022.09.559.

36 Meier, U. (2006). A note on the power of Fisher’s least significant difference procedure. Pharmaceutical Statistics: The Journal of Applied Statistics in the Pharmaceutical Industry, 5(4), 253-263. http://doi.org/10.1002/pst.210. PMid:17128424.
 

6825ea67a953952e6050b813 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections