Polímeros: Ciência e Tecnologia
https://www.revistapolimeros.org.br/article/doi/10.1590/0104-1428.20240071
Polímeros: Ciência e Tecnologia
Original Article

Micro and nanoparticulate PP/CaCO3 composites mechanical, thermal and transport properties - DOEa

Juliano Martins Barbosa; Caroline Valadão Pacheco; Gisele Szilágyi; Patrícia Candioto de Oliveira; Renato Meneghetti Peres; Hélio Ribeiro

Downloads: 0
Views: 35

Abstract

Composite based on PP/CaCO3 contained micro and nanoparticles were investigated in relation its activation volume, mechanical, thermal and transport properties. The additives were initially dispersed in homopolymer polypropylene (hPP) blended with compatibilizer maleic anhydride grafted polypropylene (PP-g-MA) in twin-screw extruder, producing CaCO3 masterbatches, that were subsequently diluted in hPP. To optimize fillers dispersion in the polymer matrix, a Design of Experiment (DOE) was used, that combined Extruder screw rotation (N: 250 and 500 rpm); Extruder feed flow (Q:10 and 15 kg/h) and Average particle size (ϕ: 40 nm and 1.7 μm) at four different filler concentrations. Based on mechanical characterization results, the best process found was 500 rpm@10 kg/h, which provided suitable Specific Mechanical Energy (SME), increasing the nanocomposites strength. Finally, improvements of Impact Resistance up to 7.8% and Young's Modulus up to 9.3% related to microcomposite and Tensile Strength (Fmax), up to 7.9%, related to hPP, with higher strain.

 

 

Keywords

activation volume, calcium carbonate, design of experiment, mineral fillers, nanocomposites

References

1 Padilha, A. F. (2000). Materiais de engenharia – microestrutura e propriedades. São Paulo: Editora Hemus.

2 Callister, W. D. (2002). Ciência e engenharia dos materiais: uma introdução. Barueri: Editora LTC.

3 Wypych, G. (1999). Handbook of fillers. New York: Plastics Design Library.

4 Yang, K., Yang, Q., Li, G., Sun, Y., & Feng, D. (2006). Morphology and mechanical properties of polypropylene/calcium carbonate nanocomposites. Materials Letters, 60(6), 805-809. http://doi.org/10.1016/j.matlet.2005.10.020.

5 Rabelo, M. (2000). Aditivação de polímeros. São Paulo: Artliber Editora.

6 Fischer, H. (2003). Polymer nanocomposite: from fundamental research to specific application. Materials Science and Engineering C, 23(6-8), 763-772. http://doi.org/10.1016/j.msec.2003.09.148.

7 Rodolfo, A., Nunes, L. R., & Ormanji, W. (2006). Tecnologia do PVC. São Paulo: ProEditores/Braskem. Retrieved in 2024, May 19, from https://www.braskem.com/Portal/Principal/Arquivos/Download/Upload/Tecnologia%20do%20PVC%202a%20edi%C3%A7%C3%A3o_22.pdf

8 Mai, Y.-W., & Yu, Z.-Z. (Eds.) (2006). Polymer nanocomposites. Cambridge, England: Woodhead Publishing Limited. http://doi.org/10.1533/9781845691127.

9 Huang, Z., Lin, Z., Cai, Z., & Mai, K. (2004). Physical and mechanical properties of nano-CaCO3/PP composites modified with acrylic acid. Plastics, Rubber and Composites, 33(8), 343-351. http://doi.org/10.1179/174328904X22314.

10 Ribeiro, H., Silva, W. M., Neves, J. C., Calado, H. D. R., Paniago, R., Seara, L. M., Camarano, D. M., & Silva, G. G. (2015). Multifunctional nanocomposites based on tetraethylenepentamine-modified graphene oxide/epoxy. Polymer Testing, 43, 182-192. http://doi.org/10.1016/j.polymertesting.2015.03.010.

11 Barbosa, J. M. (2021). Influência da incorporação de negro de fumo e carbonato de cálcio micro e nanoparticulado nas propriedades reológicas, colorimétricas e mecânicas de filmes de polietileno de baixa densidade (Doctoral dissertation). Universidade Federal de São Carlos, São Carlos.

12 Domenech, T., Peuvrel-Disdier, E., & Vergnes, B. (2013). The importance of specific mechanical energy during twin screw extrusion of organoclay based polypropylene nanocomposites. Composites Science and Technology, 75, 7-14. http://doi.org/10.1016/j.compscitech.2012.11.016.

13 Century Extrusion Group. (2018). Torque vs Specific Energy. Process Technology [Webinar]. Century Extrusion Group. Retrieved in 2024, January 13, from https://ekc.cpmextrusiongroup.com/project/torque-vs-specific-energy/

14 Barbosa, J. M., Beatrice, C. A. G., & Pessan, L. A. (2022). Influence of carbon black trimodal mixture on LDPE films properties: Part2 – SME. Polímeros: Ciência e Tecnlogia, 32(3), e2022030. http://doi.org/10.1590/0104-1428.20220053.

15 Rocha, M. C. G., Silva, A. H. F. T., Coutinho, F. M. B., & Silva, A. L. N. (2005). Study of composites based on polypropylene and calcium carbonate by experimental design. Polymer Testing, 24(8), 1049-1053. http://doi.org/10.1016/j.polymertesting.2005.05.008.

16 Thio, Y. S., Argon, A. S., Cohen, R. E., & Weinberg, M. (2002). Toughening of Isotactic polypropylene with CaCO3 particles. Polymers, 43(13), 3661-3674. http://doi.org/10.1016/S0032-3861(02)00193-3.

17 Chan, C.-M., Wu, J., Li, J.-X., & Cheung, Y.-K. (2002). Polypropylene/Calcium carbonate nanocomposite. Polymer, 43(10), 2981-2992. http://doi.org/10.1016/S0032-3861(02)00120-9.

18 Zhang, Q.-X., Yu, Z.-Z., Xie, X.-L., & Mai, Y.-W. (2004). Crystallization and Impact energy of Polypropyle/CaCO3 nanocomposite with nonionic modifier. Polymer, 45(17), 5985-5994. http://doi.org/10.1016/j.polymer.2004.06.044.

19 Eiras, D. (2009). Tenacificação de polipropileno com nanopartículas de carbonato de cálcio (Master’s thesis). Universidade Federal de São Carlos, São Carlos.

20 Silva, A. L. N., Bertolino, L. C., Nasser, R. O., Costa, L. S., Melo, A. A., Marquezine, L. P. S., Silva, A. H. M. F. T., Alves, V. O., & Nascimento, C. R. V. (2013). Application of a factorial planning for the evaluation of mechanical, thermal, morphologic and flow properties of PEAD and CaCO3 composites. Matéria (Rio de Janeiro), 18(3), 1382-1394. http://doi.org/10.1590/S1517-70762013000300006.

21 Barbosa, J. M., Beatrice, C. A. G., & Pessan, L. A. (2022). Influence of carbon black trimodal mixture on LDPE films properties: Part1 – DOE. Polímeros: Ciência e Tecnologia, 32(3), e2022029. http://doi.org/10.1590/0104-1428.20220039.

22 Barbosa, J. M. (2011). Estudo das propriedades mecânicas, térmicas e de transporte do compósito com carbonato de cálcio nano e microparticulado em polipropileno (Master’s thesis). Universidade Federal de São Carlos, São Carlos.

23 Barbosa, J. M., Pacheco, C. P., Szilágyi, G., Oliveira, P. C. M., Peres, R. M., & Ribeiro, H. (2022). Mechanical properties of polypropylene/calcium carbonate micro and nanocomposites. In Anais do 17° Congresso Brasileiro de Polimeros – CBPol (p.760). São Paulo: ABPol.

24 NanoMaterials Technology Pte Ltd. (2024). Retrieved in 2024, January 13, from https://nanomt.com/products/npcc/

25 Omya International AG. (2023). Retrieved in 2023, December 20, from https://www.omya.com/en/products/polymers

26 Dow Inc. (2024) Retrieved in 2024, May 11, from https://www.dow.com/pt-br/pdp.fusabond-p353-functional-polymer.1891762z.html#overview

27 Braskem S/A. (2024). Retrieved in 2024, May 19, from https://www.braskem.com/busca-de-produtos?p=309

28 Lotti, C., Isaac, C. S., Branciforti, M. C., Alves, R. M. V., Liberman, S., & Bretas, R. E. S. (2008). Rheological, mechanical and transport property of blow films of high density polyethylene nanocompósitos. European Polymer Journal, 44(5), 1346-1357. http://doi.org/10.1016/j.eurpolymj.2008.02.014.

29 American Society for Testing and Materials – ASTM. (2023). ASTM D1238-23a: Standard Test Method for Melt Flow Rates of Thermoplastics by Extrusion Plastometer. West Conshohocken: ASTM International. http://doi.org/10.1520/D1238-23A.

30 American Society for Testing and Materials – ASTM. (2022). ASTM D5630-22: Standard Test Method for Ash Content in Plastics. West Conshohocken: ASTM International. http://doi.org/10.1520/D5630-22.

31 American Society for Testing and Materials – ASTM. (2022). ASTM D638-22: Standard Test Method for Tensile Properties of Plastics. West Conshohocken: ASTM International. http://doi.org/10.1520/D0638-22.

32 Ward, I. M., & Pinnock, P. R. (1983). Mechanical properties of solid polymers. West Sussex: John Wiley and Sons.

33 Brown, R. (2002). Handbook of polymer testing – short-term mechanical tests. Shawburry: Rapra Technology.

34 American Society for Testing and Materials – ASTM. (2023). ASTM D256-23e1: Standard Test Method for Determining the Izod Pendulum Impact Resistance of Plastics. West Conshohocken: ASTM International. http://doi.org/10.1520/D0256-23E01.

35 Saraya, M. E.-S. I., & Rokbaa, H. H. A. L. (2016). Preparation of vaterite calcium carbonate in the form of spherical nano-size particles with the aid of polycarboxylate superplasticizer as a capping agent. American Journal of Nanomaterials, 4(2), 44-51. http://doi.org/10.12691/ajn-4-2-3.

36 Sakahara, R., Lima, A., & Wang, S. H. (2014). Influence of the beta crystalline phase fraction on the mechanical behavior of polypropylene/calcium carbonate/polypropylene - graft - maleic anhydride composites. Polímeros: Ciência e Tecnologia, 24(5), 554-560. http://doi.org/10.1590/0104-1428.1692.

37 Uzun, İ. (2023). Methods of determining the degree of crystallinity of polymers with X-ray diffraction. Journal of Polymer Research, 30(10), 394. http://doi.org/10.1007/s10965-023-03744-0.

38 Canevarolo, S. V. (2004). Técnicas de caracterização de polímeros. São Paulo: Artliber Editora.

39 Mareri, P., Bastide, S., Binda, N., & Crespy, A. (1998). Mechanical behaviour of PP Composites containing fine mineral filler: effect of filler surface tratament. Composites Science and Technology, 58(5), 747-752. http://doi.org/10.1016/S0266-3538(97)00156-5.

40 Barbosa, J. M., & Ruvolo, A., Fo. (2009). Estudo das propriedades mecânicas do nanocompósito e microcompósito de carbonato de cálcio em polipropileno. In Anais do 10° Congresso Brasileiro de Polimeros – CBPol (p. 690). São Paulo: ABPol.
 

6825e723a953952cf8112aa3 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections