Polímeros: Ciência e Tecnologia
https://www.revistapolimeros.org.br/article/doi/10.1590/0104-1428.20240068
Polímeros: Ciência e Tecnologia
Original Article

Anchoring of ex-situ MOF-199 and MOF-UiO-66-NH2 onto TEMPO-oxidized cotton: potential antibacterials

Sergio Alejandro Torres-Cortés; Mauricio Velasquez; César Sierra

Downloads: 0
Views: 28

Abstract

This study reports the ex-situ anchoring of two metal organic frameworks (MOF-199 and MOF UiO-66-NH2) onto TEMPO-oxidized cotton fibers. While in-situ anchoring methodologies are reported, ex-situ protocols are underreported despite their advantages in industrial scaling-up and control. The functionalized composites were characterized after 48 h of Soxhlet treatment. X-ray diffraction and infrared spectra confirmed MOFs anchorage through super positioning signals corresponding to cotton and MOFs. Likewise, X-ray photoelectron spectra (XPS) show the presence of Cu2+ (4.73% molar ratio) and Zr4+ (12.06%) coordinated to the -COO groups of the organic linkers, indicating a stable chemical interaction. Finally, SEM confirmed the expected MOF morphology. The potential antibacterial activity of these materials was evaluated. The assays revealed a bacteriostatic effect for MOF UiO-66-NH2@cotton, even after 48 h of contact. Meanwhile, the MOF-199@cotton showed a bactericide effect under the same conditions.

 

 

Keywords

antibacterial material, ex-situ chemical anchorage, MOF, TEMPO-oxidation

References

1 Kim, J., Yun, S., & Ounaies, Z. (2006). Discovery of cellulose as a smart material. Macromolecules, 39(12), 4202-4206. http://doi.org/10.1021/ma060261e.

2 Habibi, Y., Lucia, L. A., & Rojas, O. J. (2010). Cellulose nanocrystals: chemistry, self-assembly, and applications. Chemical Reviews, 110(6), 3479-3500. http://doi.org/10.1021/cr900339w. PMid:20201500.

3 Hyde, K., Dong, H., & Hinestroza, J. P. (2007). Effect of surface cationization on the conformal deposition of polyelectrolytes over cotton fibers. Cellulose (London, England), 14(6), 615-623. http://doi.org/10.1007/s10570-007-9126-z.

4 Mowafi, S., Rehan, M., Mashaly, H. M., Abou El-Kheir, A., & Emam, H. E. (2017). Influence of silver nanoparticles on the fabrics functions prepared by in-situ technique. Journal of the Textile Institute, 108(10), 1828-1839. http://doi.org/10.1080/00405000.2017.1292649.

5 Abbas, M., Iftikhar, H., Malik, M. H., & Nazir, A. (2018). Surface coatings of TiO2 nanoparticles onto the designed fabrics for enhanced self-cleaning properties. Coatings, 8(1), 35. http://doi.org/10.3390/coatings8010035.

6 Marković, D., Korica, M., Kostić, M., Radovanović, Ž., Šaponjić, Z., Mitrić, M., & Radetić, M. (2018). In situ synthesis of Cu/Cu2O nanoparticles on the TEMPO oxidized cotton fabrics. Cellulose (London, England), 25(1), 829-841. http://doi.org/10.1007/s10570-017-1566-5.

7 Assen, A. H., Yassine, O., Shekhah, O., Eddaoudi, M., & Salama, K. N. (2017). MOFs for the sensitive detection of ammonia: deployment of fcu-MOF thin-films as effective chemical capacitive sensors. ACS Sensors, 2(9), 1294-1301. http://doi.org/10.1021/acssensors.7b00304. PMid:28809112.

8 Ozer, R. R., & Hinestroza, J. P. (2015). One-step growth of isoreticular luminescent metal–organic frameworks on cotton fibers. RSC Advances, 5(20), 15198-15204. http://doi.org/10.1039/C4RA15161E.

9 Smith, M. K., & Mirica, K. A. (2017). Self-Organized Frameworks on Textiles (SOFT): conductive fabrics for simultaneous sensing, capture, and filtration of gases. Journal of the American Chemical Society, 139(46), 16759-16767. http://doi.org/10.1021/jacs.7b08840. PMid:29087700.

10 Wyszogrodzka, G., Marszałek, B., Gil, B., & Dorożyński, P. (2016). Metal-organic frameworks: mechanisms of antibacterial action and potential applications. Drug Discovery Today, 21(6), 1009-1018. http://doi.org/10.1016/j.drudis.2016.04.009. PMid:27091434.

11 Horcajada, P., Gref, R., Baati, T., Allan, P. K., Maurin, G., Couvreur, P., Férey, G., Morris, R. E., & Serre, C. (2012). Metal-organic frameworks in biomedicine. Chemical Reviews, 112(2), 1232-1268. http://doi.org/10.1021/cr200256v. PMid:22168547.

12 Heinze, T., & Koschella, A. (2005). Carboxymethyl ethers of cellulose and starch - A review. Macromolecular Symposia, 223(1), 13-40. http://doi.org/10.1002/masy.200550502.

13 Nooy, A. E. J., Besemer, A. C., & van Bekkum, H. (1995). Highly selective nitroxyl radical-mediated oxidation of primary alcohol groups in water-soluble glucans. Carbohydrate Research, 269(1), 89-98. http://doi.org/10.1016/0008-6215(94)00343-E.

14 Ovalle-Serrano, S. A., Díaz-Serrano, L. A., Hong, C., Hinestroza, J. P., Blanco-Tirado, C., & Combariza, M. Y. (2020). Synthesis of cellulose nanofiber hydrogels from fique tow and Ag nanoparticles. Cellulose (London, England), 27(17), 9947-9961. http://doi.org/10.1007/s10570-020-03527-6.

15 Saito, T., & Isogai, A. (2004). TEMPO-mediated oxidation of native cellulose. The effect of oxidation conditions on chemical and crystal structures of the water-insoluble fractions. Biomacromolecules, 5(5), 1983-1989. http://doi.org/10.1021/bm0497769. PMid:15360314.

16 Biermann, C. J. (1996). Handbook of Pulping and Papermaking. London: Academic Press Limited.

17 Pinto, M. S., Sierra-Avila, C. A., & Hinestroza, J. P. (2012). In situ synthesis of a Cu-BTC metal-organic framework (MOF 199) onto cellulosic fibrous substrates: cotton. Cellulose (London, England), 19(5), 1771-1779. http://doi.org/10.1007/s10570-012-9752-y.

18 Rodríguez, H. S., Hinestroza, J. P., Ochoa-Puentes, C., Sierra, C. A., & Soto, C. Y. (2014). Antibacterial activity against escherichia coli of Cu-BTC (MOF-199) metal-organic framework immobilized onto cellulosic fibers. Journal of Applied Polymer Science, 131(19), 40815. http://doi.org/10.1002/app.40815.

19 Emam, H. E., Darwesh, O. M., & Abdelhameed, R. M. (2020). Protective cotton textiles via amalgamation of cross-linked zeolitic imidazole framework. Industrial & Engineering Chemistry Research, 59(23), 10931-10944. http://doi.org/10.1021/acs.iecr.0c01384.

20 Zhang, X.-F., Feng, Y., Wang, Z., Jia, M., & Yao, J. (2018). Fabrication of cellulose nanofibrils/UiO-66-NH2 composite membrane for CO2/N2 separation. Journal of Membrane Science, 568, 10-16. http://doi.org/10.1016/j.memsci.2018.09.055.

21 Fu, H., Ou, P., Zhu, J., Song, P., Yang, J., & Wu, Y. (2019). Enhanced protein adsorption in fibrous substrates treated with zeolitic imidazolate framework-8 (ZIF-8) nanoparticles. ACS Applied Nano Materials, 2(12), 7626-7636. http://doi.org/10.1021/acsanm.9b01717.

22 Chen, Z., Ma, K., Mahle, J. J., Wang, H., Syed, Z. H., Atilgan, A., Chen, Y., Xin, J. H., Islamoglu, T., Peterson, G. W., & Farha, O. K. (2019). Integration of metal-organic frameworks on protective layers for destruction of nerve agents under relevant conditions. Journal of the American Chemical Society, 141(51), 20016-20021. http://doi.org/10.1021/jacs.9b11172. PMid:31833359.

23 Torres-Cortés, S. A., Velasquez, M., Pérez, L. D., & Sierra, C. A. (2022). Ex situ synthesis of MOF@PET/cotton textile fibers as potential antibacterial materials. Journal of Polymer Research, 29(10), 427. http://doi.org/10.1007/s10965-022-03216-x.

24 Tranchemontagne, D. J., Hunt, J. R., & Yaghi, O. M. (2008). Room temperature synthesis of metal-organic frameworks: MOF-5, MOF-74, MOF-199, and IRMOF-0. Tetrahedron, 64(36), 8553-8557. http://doi.org/10.1016/j.tet.2008.06.036.

25 Kandiah, M., Nilsen, M. H., Usseglio, S., Jakobsen, S., Olsbye, U., Tilset, M., Larabi, C., Quadrelli, E. A., Bonino, F., & Lillerud, K. P. (2010). Synthesis and Stability of Tagged UiO-66 Zr-MOFs. Chemistry of Materials, 22(24), 6632-6640. http://doi.org/10.1021/cm102601v.

26 Zhao, H., Kwak, J. H., Conrad Zhang, Z., Brown, H. M., Arey, B. W., & Holladay, J. E. (2007). Studying cellulose fiber structure by SEM, XRD, NMR and acid hydrolysis. Carbohydrate Polymers, 68(2), 235-241. http://doi.org/10.1016/j.carbpol.2006.12.013.

27 French, A. D. (2014). Idealized powder diffraction patterns for cellulose polymorphs. Cellulose (London, England), 21(2), 885-896. http://doi.org/10.1007/s10570-013-0030-4.

28 Porras, J. D., Arteta, S. M., & Pérez, L. D. (2020). Development of an adsorbent for Bisphenol A based on a polymer grafted from microcrystalline cellulose. Water, Air, and Soil Pollution, 231(10), 499. http://doi.org/10.1007/s11270-020-04861-y.

29 Segal, L., Creely, J. J., Martin, A. E. Jr, & Conrad, C. M. (1959). An empirical method for estimating the degree of crystallinity of native cellulose using the x-ray diffractometer. Textile Research Journal, 29(10), 786-794. http://doi.org/10.1177/004051755902901003.

30 Prestipino, C., Regli, L., Vitillo, J. G., Bonino, F., Damin, A., Lamberti, C., Zecchina, A., Solari, P. L., Kongshaug, K. O., & Bordiga, S. (2006). Local structure of framework Cu(II) in HKUST-1 metallorganic framework: spectroscopic characterization upon activation and interaction with adsorbates. Chemistry of Materials, 18(5), 1337-1346. http://doi.org/10.1021/cm052191g.

31 Neufeld, M. J., Harding, J. L., & Reynolds, M. M. (2015). Immobilization of Metal-Organic Framework Copper(II) Benzene-1,3,5-tricarboxylate (CuBTC) onto cotton fabric as a nitric oxide release catalyst. ACS Applied Materials & Interfaces, 7(48), 26742-26750. http://doi.org/10.1021/acsami.5b08773. PMid:26595600.

32 Hamisu, A. M., Ariffin, A., & Wibowo, A. C. (2020). Cation exchange in metal-organic frameworks (MOFs): the hard-soft acid-base (HSAB) principle appraisal. Inorganica Chimica Acta, 511, 119801. http://doi.org/10.1016/j.ica.2020.119801.

33 DeCoste, J. B., Peterson, G. W., Jasuja, H., Glover, T. G., Huang, Y.-G., & Walton, K. S. (2013). Stability and degradation mechanisms of metal-organic frameworks containing the Zr6O4(OH)4 secondary building unit. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 1(18), 5642-5650. http://doi.org/10.1039/c3ta10662d.

34 Abdelhameed, R. M., Rehan, M., & Emam, H. E. (2018). Figuration of Zr-based MOF@cotton fabric composite for potential kidney application. Carbohydrate Polymers, 195, 460-467. http://doi.org/10.1016/j.carbpol.2018.04.122. PMid:29805000.

35 Schelling, M., Kim, M., Otal, E., & Hinestroza, J. (2018). Decoration of cotton fibers with a water-stable metal–organic framework (UiO-66) for the decomposition and enhanced adsorption of micropollutants in water. Bioengineering (Basel, Switzerland), 5(1), 14. http://doi.org/10.3390/bioengineering5010014. PMid:29439527.

36 Wagner, C. D., Riggs, W. M., Davis, L. E., Moulder, J. F., & Muilenberg, G. E. (1979). Handbook of X-ray Photoelectron Spectroscopy. USA: Perkin-Elmer Corporation.

37 Ardila-Suárez, C., Rodríguez-Pereira, J., Baldovino-Medrano, V. G., & Ramírez-Caballero, G. E. (2019). An analysis of the effect of zirconium precursors of MOF-808 on its thermal stability, and structural and surface properties. CrystEngComm, 21(9), 1407-1415. http://doi.org/10.1039/C8CE01722K.

38 Tian, S., Yi, Z., Chen, J., & Fu, S. (2023). In situ growth of UiO-66-NH2 in wood-derived cellulose for iodine adsorption. Journal of Hazardous Materials, 443, 130236. http://doi.org/10.1016/j.jhazmat.2022.130236.

39 Ansel, H. C., Norred, W. P., & Roth, I. L. (1969). Antimicrobial activity of dimethyl sulfoxide against Escherichia coli, Pseudomonas aeruginosa, and Bacillus megaterium. Journal of Pharmaceutical Sciences, 58(7), 836-839. http://doi.org/10.1002/jps.2600580708. PMid:4980332.

40 Mao, K., Zhu, Y., Rong, J., Qiu, F., Chen, H., Xu, J., Yang, D., Zhang, T., & Zhong, L. (2021). Rugby-ball like Ag modified zirconium porphyrin metal–organic frameworks nanohybrid for antimicrobial activity: synergistic effect for significantly enhancing photoactivation capacity. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 611, 125888. http://doi.org/10.1016/j.colsurfa.2020.125888.

41 Zhao, W., Deng, J., Ren, Y., Xie, L., Li, W., Wang, Q., Li, S., & Liu, S. (2021). Antibacterial application and toxicity of metal–organic frameworks. Nanotoxicology, 15(3), 311-330. http://doi.org/10.1080/17435390.2020.1851420. PMid:33259255.

42 Mortada, B., Matar, T. A., Sakaya, A., Atallah, H., Kara Ali, Z., Karam, P., & Hmadeh, M. (2017). Postmetalated zirconium metal organic frameworks as a highly potent bactericide. Inorganic Chemistry, 56(8), 4740-4744. http://doi.org/10.1021/acs.inorgchem.7b00429. PMid:28338319.
 

6825e96da953952d7339ce95 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections