Anchoring of ex-situ MOF-199 and MOF-UiO-66-NH2 onto TEMPO-oxidized cotton: potential antibacterials
Sergio Alejandro Torres-Cortés; Mauricio Velasquez; César Sierra
Abstract
Keywords
References
1 Kim, J., Yun, S., & Ounaies, Z. (2006). Discovery of cellulose as a smart material.
2 Habibi, Y., Lucia, L. A., & Rojas, O. J. (2010). Cellulose nanocrystals: chemistry, self-assembly, and applications.
3 Hyde, K., Dong, H., & Hinestroza, J. P. (2007). Effect of surface cationization on the conformal deposition of polyelectrolytes over cotton fibers.
4 Mowafi, S., Rehan, M., Mashaly, H. M., Abou El-Kheir, A., & Emam, H. E. (2017). Influence of silver nanoparticles on the fabrics functions prepared by in-situ technique.
5 Abbas, M., Iftikhar, H., Malik, M. H., & Nazir, A. (2018). Surface coatings of TiO2 nanoparticles onto the designed fabrics for enhanced self-cleaning properties.
6 Marković, D., Korica, M., Kostić, M., Radovanović, Ž., Šaponjić, Z., Mitrić, M., & Radetić, M. (2018). In situ synthesis of Cu/Cu2O nanoparticles on the TEMPO oxidized cotton fabrics.
7 Assen, A. H., Yassine, O., Shekhah, O., Eddaoudi, M., & Salama, K. N. (2017). MOFs for the sensitive detection of ammonia: deployment of fcu-MOF thin-films as effective chemical capacitive sensors.
8 Ozer, R. R., & Hinestroza, J. P. (2015). One-step growth of isoreticular luminescent metal–organic frameworks on cotton fibers.
9 Smith, M. K., & Mirica, K. A. (2017). Self-Organized Frameworks on Textiles (SOFT): conductive fabrics for simultaneous sensing, capture, and filtration of gases.
10 Wyszogrodzka, G., Marszałek, B., Gil, B., & Dorożyński, P. (2016). Metal-organic frameworks: mechanisms of antibacterial action and potential applications.
11 Horcajada, P., Gref, R., Baati, T., Allan, P. K., Maurin, G., Couvreur, P., Férey, G., Morris, R. E., & Serre, C. (2012). Metal-organic frameworks in biomedicine.
12 Heinze, T., & Koschella, A. (2005). Carboxymethyl ethers of cellulose and starch - A review.
13 Nooy, A. E. J., Besemer, A. C., & van Bekkum, H. (1995). Highly selective nitroxyl radical-mediated oxidation of primary alcohol groups in water-soluble glucans.
14 Ovalle-Serrano, S. A., Díaz-Serrano, L. A., Hong, C., Hinestroza, J. P., Blanco-Tirado, C., & Combariza, M. Y. (2020). Synthesis of cellulose nanofiber hydrogels from fique tow and Ag nanoparticles.
15 Saito, T., & Isogai, A. (2004). TEMPO-mediated oxidation of native cellulose. The effect of oxidation conditions on chemical and crystal structures of the water-insoluble fractions.
16 Biermann, C. J. (1996).
17 Pinto, M. S., Sierra-Avila, C. A., & Hinestroza, J. P. (2012). In situ synthesis of a Cu-BTC metal-organic framework (MOF 199) onto cellulosic fibrous substrates: cotton.
18 Rodríguez, H. S., Hinestroza, J. P., Ochoa-Puentes, C., Sierra, C. A., & Soto, C. Y. (2014). Antibacterial activity against escherichia coli of Cu-BTC (MOF-199) metal-organic framework immobilized onto cellulosic fibers.
19 Emam, H. E., Darwesh, O. M., & Abdelhameed, R. M. (2020). Protective cotton textiles via amalgamation of cross-linked zeolitic imidazole framework.
20 Zhang, X.-F., Feng, Y., Wang, Z., Jia, M., & Yao, J. (2018). Fabrication of cellulose nanofibrils/UiO-66-NH2 composite membrane for CO2/N2 separation.
21 Fu, H., Ou, P., Zhu, J., Song, P., Yang, J., & Wu, Y. (2019). Enhanced protein adsorption in fibrous substrates treated with zeolitic imidazolate framework-8 (ZIF-8) nanoparticles.
22 Chen, Z., Ma, K., Mahle, J. J., Wang, H., Syed, Z. H., Atilgan, A., Chen, Y., Xin, J. H., Islamoglu, T., Peterson, G. W., & Farha, O. K. (2019). Integration of metal-organic frameworks on protective layers for destruction of nerve agents under relevant conditions.
23 Torres-Cortés, S. A., Velasquez, M., Pérez, L. D., & Sierra, C. A. (2022). Ex situ synthesis of MOF@PET/cotton textile fibers as potential antibacterial materials.
24 Tranchemontagne, D. J., Hunt, J. R., & Yaghi, O. M. (2008). Room temperature synthesis of metal-organic frameworks: MOF-5, MOF-74, MOF-199, and IRMOF-0.
25 Kandiah, M., Nilsen, M. H., Usseglio, S., Jakobsen, S., Olsbye, U., Tilset, M., Larabi, C., Quadrelli, E. A., Bonino, F., & Lillerud, K. P. (2010). Synthesis and Stability of Tagged UiO-66 Zr-MOFs.
26 Zhao, H., Kwak, J. H., Conrad Zhang, Z., Brown, H. M., Arey, B. W., & Holladay, J. E. (2007). Studying cellulose fiber structure by SEM, XRD, NMR and acid hydrolysis.
27 French, A. D. (2014). Idealized powder diffraction patterns for cellulose polymorphs.
28 Porras, J. D., Arteta, S. M., & Pérez, L. D. (2020). Development of an adsorbent for Bisphenol A based on a polymer grafted from microcrystalline cellulose.
29 Segal, L., Creely, J. J., Martin, A. E. Jr, & Conrad, C. M. (1959). An empirical method for estimating the degree of crystallinity of native cellulose using the x-ray diffractometer.
30 Prestipino, C., Regli, L., Vitillo, J. G., Bonino, F., Damin, A., Lamberti, C., Zecchina, A., Solari, P. L., Kongshaug, K. O., & Bordiga, S. (2006). Local structure of framework Cu(II) in HKUST-1 metallorganic framework: spectroscopic characterization upon activation and interaction with adsorbates.
31 Neufeld, M. J., Harding, J. L., & Reynolds, M. M. (2015). Immobilization of Metal-Organic Framework Copper(II) Benzene-1,3,5-tricarboxylate (CuBTC) onto cotton fabric as a nitric oxide release catalyst.
32 Hamisu, A. M., Ariffin, A., & Wibowo, A. C. (2020). Cation exchange in metal-organic frameworks (MOFs): the hard-soft acid-base (HSAB) principle appraisal.
33 DeCoste, J. B., Peterson, G. W., Jasuja, H., Glover, T. G., Huang, Y.-G., & Walton, K. S. (2013). Stability and degradation mechanisms of metal-organic frameworks containing the Zr6O4(OH)4 secondary building unit.
34 Abdelhameed, R. M., Rehan, M., & Emam, H. E. (2018). Figuration of Zr-based MOF@cotton fabric composite for potential kidney application.
35 Schelling, M., Kim, M., Otal, E., & Hinestroza, J. (2018). Decoration of cotton fibers with a water-stable metal–organic framework (UiO-66) for the decomposition and enhanced adsorption of micropollutants in water.
36 Wagner, C. D., Riggs, W. M., Davis, L. E., Moulder, J. F., & Muilenberg, G. E. (1979).
37 Ardila-Suárez, C., Rodríguez-Pereira, J., Baldovino-Medrano, V. G., & Ramírez-Caballero, G. E. (2019). An analysis of the effect of zirconium precursors of MOF-808 on its thermal stability, and structural and surface properties.
38 Tian, S., Yi, Z., Chen, J., & Fu, S. (2023). In situ growth of UiO-66-NH2 in wood-derived cellulose for iodine adsorption.
39 Ansel, H. C., Norred, W. P., & Roth, I. L. (1969). Antimicrobial activity of dimethyl sulfoxide against Escherichia coli, Pseudomonas aeruginosa, and Bacillus megaterium.
40 Mao, K., Zhu, Y., Rong, J., Qiu, F., Chen, H., Xu, J., Yang, D., Zhang, T., & Zhong, L. (2021). Rugby-ball like Ag modified zirconium porphyrin metal–organic frameworks nanohybrid for antimicrobial activity: synergistic effect for significantly enhancing photoactivation capacity.
41 Zhao, W., Deng, J., Ren, Y., Xie, L., Li, W., Wang, Q., Li, S., & Liu, S. (2021). Antibacterial application and toxicity of metal–organic frameworks.
42 Mortada, B., Matar, T. A., Sakaya, A., Atallah, H., Kara Ali, Z., Karam, P., & Hmadeh, M. (2017). Postmetalated zirconium metal organic frameworks as a highly potent bactericide.