Polímeros: Ciência e Tecnologia
https://www.revistapolimeros.org.br/article/doi/10.1590/0104-1428.20240056
Polímeros: Ciência e Tecnologia
Original Article

Physical and mechanical evaluation of polymeric blends with residues of polypropylene masksa

Anderson Ravik Santos; Tiago Vieira da Silva; Ítalo Rocha Coura; Patrícia Santiago de Oliveira Patrício; Wanna Carvalho Fontes

Downloads: 0
Views: 31

Abstract

The SARS-CoV-2 Coronavirus pandemic and the rise in climate disasters have fueled a surge in disposable mask production, exacerbating waste challenges. The study proposes a sustainable pathway for recycling Non-Woven Fabric (NWF) originating from masks made of Polypropylene (PP) used as Personal Protective Equipment (PPE). Eco-friendly blends of virgin polypropylene (vPP) and recycled non-woven fabric (NWF) were produced through extrusion, and the physicochemical and mechanical properties of the blends were evaluated. The addition of NWF resulted in lower tensile and flexural strengths than vPP. However, from 50%wt of recycled NWF, the blends proved to be as stiff as, or even stiffer than, the virgin polymer. While slightly lower, the 50%wt NWF blend achieved properties close to those of vPP, making it the ideal composition for replacing PP in conventional applications. This approach offers a sustainable solution for mask recycling, reducing disposal impacts and supporting a circular economy.

 

 

Keywords

Non-Woven Fabric, pandemic waste, polymeric blend, polypropylene

References

1 Rajak, K. (2020). COVID-19 crisis prompting innovation in addressing personal protective equipment shortage. Journal of Patan Academy of Health Sciences, 7(1), 69-72. http://doi.org/10.3126/jpahs.v7i1.28867.

2 Cohen, J., & Rodgers, Y. V. D. M. (2020). Contributing factors to personal protective equipment shortages during the COVID-19 pandemic. Preventive Medicine, 141, 106263. http://doi.org/10.1016/j.ypmed.2020.106263. PMid:33017601.

3 Fischer, E. P., Fischer, M. C., Grass, D., Henrion, I., Warren, W. S., & Westman, E. (2020). Low-cost measurement of face mask efficacy for filtering expelled droplets during speech. Science Advances, 6(36), eabd3083. http://doi.org/10.1126/sciadv.abd3083. PMid:32917603.

4 Raurell-Torredà, M., Martínez-Estalella, G., Frade-Mera, M. J., Rodríguez-Rey, L. F. C., & San Pío, E. R. (2020). Reflections arising from the COVID-19 pandemic. Enfermeria Intensiva, 31(2), 90-93. http://doi.org/10.1016/j.enfie.2020.03.001. PMid:32284182.

5 Pathak, V. M., & Navneet, (2017). Review on the current status of polymer degradation: a microbial approach. Bioresources and Bioprocessing, 4(1), 15. http://doi.org/10.1186/s40643-017-0145-9.

6 D’Amato, G., Cecchi, L., D’Amato, M., & Annesi-Maesano, I. (2014). Climate change and respiratory diseases. European Respiratory Review, 23(132), 161-169. http://doi.org/10.1183/09059180.00001714. PMid:24881071.

7 Tekade, R. R., & Vidhale, S. G. (2023). Advancement in polymer blends and composites: a comprehensive review of structural, optical, thermal and electrical attributes for multifaceted Applications. Journal of Propulsion Technology, 44(4), 7190-7201. http://doi.org/10.52783/tjjpt.v44.i4.2554.

8 Dorigato, A. (2021). Recycling of polymer blends. Advanced Industrial and Engineering Polymer Research, 4(2), 53-69. http://doi.org/10.1016/j.aiepr.2021.02.005.

9 Yousaf, A., Al Rashid, A., Polat, R., & Koç, M. (2024). Potential and challenges of recycled polymer plastics and natural waste materials for additive manufacturing. Sustainable Materials and Technologies, 41, e01103. http://doi.org/10.1016/j.susmat.2024.e01103.

10 Silva, R. N., Santos, A. R., Patrício, P. S. O., & Fontes, W. C. (2024). Development and analysis of artificial ornamental stone with industrial wastes and epoxy resin. Sustainability, 16(17), 7715. http://doi.org/10.3390/su16177715.

11 Pan, D., Su, F., Liu, C., & Guo, Z. (2020). Research progress for plastic waste management and manufacture of value-added products. Advanced Composites and Hybrid Materials, 3(4), 443-461. http://doi.org/10.1007/s42114-020-00190-0.

12 Begum, S. A., Rane, A. V., & Kanny, K. (2020). Applications of compatibilized polymer blends in automobile industry. In A. A. Ajitha & S. Thomas (Eds.), Compatibilization of polymer blends: micro and nano scale phase morphologies, interphase characterization and properties (Chap. 20, pp. 563-593). Netherlands: Elsevier. http://doi.org/10.1016/B978-0-12-816006-0.00020-7.

13 Hou, X., Chen, S., Koh, J. J., Kong, J., Zhang, Y.-W., Yeo, J. C. C., Chen, H., & He, C. (2021). Entropy-driven ultratough blends from brittle polymers. ACS Macro Letters, 10(4), 406-411. http://doi.org/10.1021/acsmacrolett.0c00844. PMid:35549235.

14 Ferreira, T., Mendes, G. A., de Oliveira, A. M., & Dias, C. G. B. T. (2022). Manufacture and characterization of Polypropylene (PP) and High-Density Polyethylene (HDPE) blocks for potential use as masonry component in civil construction. Polymers, 14(12), 2463. http://doi.org/10.3390/polym14122463. PMid:35746039.

15 Huang, W., Wang, K., Tu, C., Xu, X., Tian, Q., Ma, C., Fu, Q., & Yan, W. (2022). Synergistic effects of DOPO-based derivative and organo-montmorillonite on flame retardancy, thermal stability and mechanical properties of polypropylene. Polymers, 14(12), 2372. http://doi.org/10.3390/polym14122372. PMid:35745948.

16 Matias, Á. A., Lima, M. S., Pereira, J., Pereira, P., Barros, R., Coelho, J. F. J., & Serra, A. C. (2020). Use of recycled polypropylene/poly (ethylene terephthalate) blends to manufacture water pipes: an industrial scale study. Waste Management, 101, 250-258. http://doi.org/10.1016/j.wasman.2019.10.001. PMid:31634811.

17 Velásquez, E. J., Garrido, L., Guarda, A., Galotto, M. J., & López de Dicastillo, C. (2019). Increasing the incorporation of recycled PET on polymeric blends through the reinforcement with commercial nanoclays. Applied Clay Science, 180, 105185. http://doi.org/10.1016/j.clay.2019.105185.

18 Koh, J. J., Zhang, X., & He, C. (2018). Fully biodegradable Poly(lactic acid)/Starch blends: a review of toughening strategies. International Journal of Biological Macromolecules, 109, 99-113. http://doi.org/10.1016/j.ijbiomac.2017.12.048. PMid:29248552.

19 Chen, R. S., Ab Ghani, M. H., Salleh, M. N., Ahmad, S., & Gan, S. (2014). Influence of blend composition and compatibilizer on mechanical and morphological properties of recycled HDPE/PET blends. Materials Sciences and Applications, 5(13), 943-952. http://doi.org/10.4236/msa.2014.513096.

20 Fernandes, B. L., & Domingues, A. J. (2007). Caracterização mecânica de polipropileno reciclado para a indústria automotiva. Polímeros. Ciência e Tecnologia, 17(2), 85-87. http://doi.org/10.1590/S0104-14282007000200005.

21 Ohta, H., Tohno, H., & Uruji, T. (2002). Use of recycled plastic as truck and bus component material (Technical Review, No. 14). Tokyo: Mitsubishi Motors Corporation. Retrieved in 2024, June 12, from http://mmc-manuals.ru/manuals/misc/technical_review/technical_review_2002.pdf

22 Ladhari, A., Kucukpinar, E., Stoll, H., & Sängerlaub, S. (2021). Comparison of properties with relevance for the automotive sector in mechanically recycled and virgin polypropylene. Recycling, 6(4), 76. http://doi.org/10.3390/recycling6040076.

23 Santos, A. R., Silva, R. N., Santos, N. M., Vieira, M. F. C., Patrício, P. S. O., & Fontes, W. C. (2024). Production of a wood-plastic composite with wastes from disposable masks and corrugated cardboard: a sustainable post-pandemic approach. Sustainability, 16(22), 9726. http://doi.org/10.3390/su16229726.

24 Coura, I. R., Carmignano, O. R. D. R., Heitmann, A. P., Lameiras, F. S., Lago, R. M., & Patrício, P. S. O. (2021). Use of iron mine tailing as fillers to polyethylene. Scientific Reports, 11(1), 7091. http://doi.org/10.1038/s41598-021-86456-z. PMid:33782479.

25 Qiu, W., Zhang, F., Endo, T., & Hirotsu, T. (2003). Preparation and characteristics of composites of high-crystalline cellulose with polypropylene: effects of maleated polypropylene and cellulose content. Journal of Applied Polymer Science, 87(2), 337-345. http://doi.org/10.1002/app.11446.

26 Kim, H.-S., Lee, B.-H., Choi, S.-W., Kim, S., & Kim, H.-J. (2007). The effect of types of maleic anhydride-grafted polypropylene (MAPP) on the interfacial adhesion properties of bio-flour-filled polypropylene composites. Composites. Part A, Applied Science and Manufacturing, 38(6), 1473-1482. http://doi.org/10.1016/j.compositesa.2007.01.004.

27 Gabriel, D. S., & Tiana, A. N. (2020). Mechanical properties improvement of recycled polypropylene with material value conservation schemes using virgin plastic blends. Materials Science Forum, 1015, 76-81. http://doi.org/10.4028/www.scientific.net/MSF.1015.76.

28 Hyie, K. M., Budin, S., Martinus, N., Salleh, Z., & Masdek, N. R. N. (2019). Tensile and flexural investigation on polypropylene recycling. Journal of Physics: Conference Series, 1174, 012005. http://doi.org/10.1088/1742-6596/1174/1/012005.

29 Stoian, S. A., Gabor, A. R., Albu, A.-M., Nicolae, C. A., Raditoiu, V., & Panaitescu, D. M. (2019). Recycled polypropylene with improved thermal stability and melt processability. Journal of Thermal Analysis and Calorimetry, 138(4), 2469-2480. http://doi.org/10.1007/s10973-019-08824-2.

30 Braskem. (2017). Data sheet: polypropylene H 503. Retrieved in 2024, June 12, from https://www.braskem.com.br/busca-de-produtos?p=314

31 World Health Organization – WHO. (2020). Advice on the use of masks in the context of COVID-19: interim guidance. Geneva: WHO. Retrieved in 2024, June 12, from https://iris.who.int/handle/10665/332293

32 American Society for Testing and Materials – ASTM. (2014). ASTM D638-14: standard test method for tensile properties of plastics. West Conshohocken: ASTM.

33 American Society for Testing and Materials – ASTM. (2007). ASTM D790-07: standard test methods for flexural properties of unreinforced and reinforced plastics and electrical insulating materials. West Conshohocken: ASTM.

34 American Society for Testing and Materials – ASTM. (1998). ASTM D570-98: standard test method for water absorption of plastics. West Conshohocken: ASTM.

35 Lanyi, F. J., Wenzke, N., Kaschta, J., & Schubert, D. W. (2020). On the determination of the enthalpy of fusion of α-crystalline isotactic polypropylene using differential scanning calorimetry, X-ray diffraction, and fourier-transform infrared spectroscopy: an old story revisited. Advanced Engineering Materials, 22(9), 1900796. http://doi.org/10.1002/adem.201900796.

36 Traxler, I., Kaineder, H., & Fischer, J. (2023). Simultaneous modification of properties relevant to the processing and application of virgin and post-consumer polypropylene. Polymers, 15(7), 1717. http://doi.org/10.3390/polym15071717. PMid:37050331.

37 Tratzi, P., Giuliani, C., Torre, M., Tomassetti, L., Petrucci, R., Iannoni, A., Torre, L., Genova, S., Paolini, V., Petracchini, F., & Di Carlo, G. (2021). Effect of hard plastic waste on the quality of recycled polypropylene blends. Recycling, 6(3), 58. http://doi.org/10.3390/recycling6030058.

38 Zander, N. E., Gillan, M., Burckhard, Z., & Gardea, F. (2019). Recycled polypropylene blends as novel 3D printing materials. Additive Manufacturing, 25, 122-130. http://doi.org/10.1016/j.addma.2018.11.009.

39 Handayani, S. U., Fahrudin, M., Mangestiyono, W., & Muhamad, A. F. H. (2021). Mechanical properties of commercial recycled polypropylene from plastic waste. Journal of Vocational Studies on Applied Research, 3(1), 1-4. http://doi.org/10.14710/jvsar.v3i1.10868.

40 Bahlouli, N., Pessey, D., Raveyre, C., Guillet, J., Ahzi, S., Dahoun, A., & Hiver, J. M. (2012). Recycling effects on the rheological and thermomechanical properties of polypropylene-based composites. Materials & Design, 33, 451-458. http://doi.org/10.1016/j.matdes.2011.04.049.

41 Jones, H., McClements, J., Ray, D., Hindle, C. S., Kalloudis, M., & Koutsos, V. (2023). Thermomechanical properties of virgin and recycled polypropylene: high-density polyethylene blends. Polymers, 15(21), 4200. http://doi.org/10.3390/polym15214200. PMid:37959880.

42 Bernagozzi, G., Arrigo, R., Ponzielli, G., & Frache, A. (2024). Towards effective recycling routes for polypropylene: influence of a repair additive on flow characteristics and processability. Polymer Degradation & Stability, 223, 110714. http://doi.org/10.1016/j.polymdegradstab.2024.110714.

43 Mohamad, N., Abd Latiff, A., Abd Razak, J., Ab Maulod, H. E., Liew, P. J., Kasim, M. S., & Ahsan, Q. (2021). Morphological characteristics and wear mechanism of recycled carbon fibre prepreg reinforced polypropylene composites. Malaysian Journal on Composites Science and Manufacturing, 5(1), 1-10. http://doi.org/10.37934/mjcsm.5.1.110.

44 Caicedo, C., Vázquez-Arce, A. R., Ossa, O. H., De La Cruz, H., & Maciel-Cerda, A. (2018). Physicomechanical behavior of composites of polypropylene, and mineral fillers with different process cycles. Dyna, 85(207), 260-268. http://doi.org/10.15446/dyna.v85n207.71894.

45 Barbosa, L. G., Piaia, M., & Ceni, G. H. (2017). Analysis of impact and tensile properties of recycled polypropylene. International Journal of Materials Engineering, 7(6), 117-120. http://doi.org/10.5923/j.ijme.20170706.03.

46 Raj, M. M., Patel, H. V., Raj, L. M., & Patel, N. K. (2013). Studies on mechanical properties of recycled polypropylene blended with virgin polypropylene. International Journal of Science Innovations Today, 2(3), 194-203. Retrieved in 2024, June 12, from http://www.ijsit.com/admin/ijsit_files/STUDIES%20ON%20MECHANICAL%20PROPERTIES%20OF%20RECYCLED%20POLYPROPYLENE%20BLENDED%20WITH%20VIRGIN%20POLYPROPYLENE_IJSIT_2.3.3.pdf

47 Pantani, R., Sorrentino, A., Speranza, V., & Titomanlio, G. (2004). Molecular orientation in injection molding: experiments and analysis. Rheologica Acta, 43(2), 109-118. http://doi.org/10.1007/s00397-003-0325-8.

48 Sha, B., Dimov, S., Griffiths, C., & Packianather, M. S. (2007). Investigation of micro-injection moulding: factors affecting the replication quality. Journal of Materials Processing Technology, 183(2-3), 284-296. http://doi.org/10.1016/j.jmatprotec.2006.10.019.

49 Wang, K., Addiego, F., Bahlouli, N., Ahzi, S., Rémond, Y., & Toniazzo, V. (2014). Impact response of recycled polypropylene-based composites under a wide range of temperature: effect of filler content and recycling. Composites Science and Technology, 95, 89-99. http://doi.org/10.1016/j.compscitech.2014.02.014.

50 Mourad, A.-H. I. (2010). Thermo-mechanical characteristics of thermally aged polyethylene/polypropylene blends. Materials & Design, 31(2), 918-929. http://doi.org/10.1016/j.matdes.2009.07.031.

51 Luna, C. B. B., Silva, W. A., Araújo, E. M., Silva, L. J. M. D., Melo, J. B. D. C. A., & Wellen, R. M. R. (2022). From waste to potential reuse: mixtures of polypropylene/recycled copolymer polypropylene from industrial containers: seeking sustainable materials. Sustainability, 14(11), 6509. http://doi.org/10.3390/su14116509.
 

6825e8dea953952dc35aa0b3 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections