Polímeros: Ciência e Tecnologia
https://www.revistapolimeros.org.br/article/doi/10.1590/0104-1428.20240047
Polímeros: Ciência e Tecnologia
Original Article

Polypropylene reinforced with hollow glass microspheres: effect of thermal aging and reprocessing

Hiroshi Cavalcante Medeiros Koseki; Marlove Bergozza; Cristiano José de Farias Braz; Tatianny Soares Alves; Renata Barbosa

Downloads: 0
Views: 35

Abstract

The hollow glass microspheres (HGM), exhibit low density, reduced dielectric constant, and good thermal conductivity. This study assessed the mechanical performance of polypropylene (PP) reinforced with HGM under artificial thermal aging conditions. The compositions underwent two rounds of reprocessing in a single-screw extruder, and samples were prepared for both tensile and impact testing. Tensile specimens were subjected to thermal aging at 100 ºC for seven and 21 days. Mechanical tests were carried out on samples before and after aging, while exposed samples underwent visual inspection, optical microscopy, and Fourier transform infrared spectroscopy analysis. Visual inspection and microscopy revealed improved PP-HGM interaction due to the additives, with no deformation or damage from reprocessing. Infrared spectroscopy showed minor degradation in the PP structure post-exposure. In summary, the presence and content of HGM, reprocessing, and aging time significantly affect the mechanical properties (elastic modulus, breaking stress, elongation at break, and impact resistance).

 

 

Keywords

impac test, HGM, mechanical behavior

References

1 Gahleitner, M., & Paulik, C. (2017). Polypropylene and other polyolefins. In M. Gilbert (Ed.), Brydson’s plastics materials (pp. 279-309). Oxford: Elsevier. http://doi.org/10.1016/B978-0-323-35824-8.00011-6.

2 Vasile, C., & Pascu, M. (2005). Practical guide to polyethylene. Shrewsbury: Rapra Technology.

3 Alsabri, A., Tahir, F., & Al-Ghamdi, S. G. (2022). Environmental impacts of polypropylene (PP) production and prospects of its recycling in the GCC region. Materials Today: Proceedings, 56(Pt 4), 2245-2251. http://doi.org/10.1016/j.matpr.2021.11.574.

4 Wypych, G. (2020). UV stabilizers and other components of formulations. In G. Wypych (Ed.), Handbook of UV degradation and stabilization (pp. 433-438). Toronto: ChemTec Publishing. http://doi.org/10.1016/B978-1-927885-57-4.50013-9.

5 Biswal, T., BadJena, S. K., & Pradhan, D. (2020). Synthesis of polymer composite materials and their biomedical applications. Materials Today: Proceedings, 30(Pt 2), 305-315. http://doi.org/10.1016/j.matpr.2020.01.567.

6 DeArmitt, C., & Rothon, R. (2016). Particulate fillers, selection, and use in polymer composites. In S. Palsule (Ed.), Polymers and polymeric composites: a reference series (pp. 1-26). Berlin: Springer. http://doi.org/10.1007/978-3-642-37179-0_1-2.

7 Ferreira, T. R. M., Lechtman, M. A., Dias, F. L., & Silva, A. B. (2022). Effect of hollow glass microspheres addition on density reduction and mechanical properties of PA6/glass fibers composites. Polímeros: Ciência e Tecnologia, 32(1), e2022001. http://doi.org/10.1590/0104-1428.210060.

8 Imran, M., Rahaman, A., & Pal, S. (2019). Effect of low concentration hollow glass microspheres on mechanical and thermomechanical properties of epoxy composites. Polymer Composites, 40(9), 3493-3499. http://doi.org/10.1002/pc.25211.

9 Bharath, H. S., Bonthu, D., Prabhakar, P., & Doddamani, M. (2020). Three-dimensional printed lightweight composite foams. ACS Omega, 5(35), 22536-22550. http://doi.org/10.1021/acsomega.0c03174. PMid:32923813.

10 Niazi, P., Karevan, M., & Javanbakht, M. (2023). Mechanical and thermal insulation performance of hollow glass microsphere (HGMS)/fumed silica/polyester microcomposite coating. Progress in Organic Coatings, 176, 107387. http://doi.org/10.1016/j.porgcoat.2022.107387.

11 Maraveas, C., Kyrtopoulos, I. V., Arvanitis, K. G., & Bartzanas, T. (2024). The aging of polymers under electromagnetic radiation. Polymers, 16(5), 689. http://doi.org/10.3390/polym16050689. PMid:38475374.

12 Qin, J., Jiang, J., Tao, Y., Zhao, S., Zeng, W., Shi, Y., Lu, T., Guo, L., Wang, S., Zhang, X., Jie, G., Wang, J., & Xiao, M. (2021). Sunlight tracking and concentrating accelerated weathering test applied in weatherability evaluation and service life prediction of polymeric materials: a review. Polymer Testing, 93, 106940. http://doi.org/10.1016/j.polymertesting.2020.106940.

13 American Society for Testing and Materials – ASTM. (2022). ASTM D638-22: standard test method for tensile properties of plastics. West Conshohocken: ASTM.

14 American Society for Testing and Materials – ASTM. (2018). ASTM D3045-18: standard practice for heat aging of plastics without load. West Conshohocken: ASTM.

15 American Society for Testing and Materials – ASTM. (2023). ASTM D256-23e1: standard test methods for determining the Izod pendulum impact resistance of plastics. West Conshohocken: ASTM.

16 Hay, M. B., & Myneni, S. C. B. (2007). Structural environments of carboxyl groups in natural organic molecules from terrestrial systems. Part 1: infrared spectroscopy. Geochimica et Cosmochimica Acta, 71(14), 3518-3532. http://doi.org/10.1016/j.gca.2007.03.038.

17 Larkin, P. J. (2017). Infrared and Raman spectroscopy: principles and spectral interpretation. Amsterdam: Elsevier. http://doi.org/10.1016/C2015-0-00806-1.

18 Fuente, E., Menéndez, J. A., Díez, M. A., Suárez, D., & Montes-Morán, M. A. (2003). Infrared spectroscopy of carbon materials: A quantum chemical study of model compounds. The Journal of Physical Chemistry B, 107(26), 6350-6359. http://doi.org/10.1021/jp027482g.

19 Li, J., Wang, L., Xu, Z., Zhang, J., Li, J., Lu, X., Yan, R., & Tang, Y. (2023). A new point to correlate the multi-dimensional assessment for the aging process of microfibers. Water Research, 235, 119933. http://doi.org/10.1016/j.watres.2023.119933. PMid:37023644.

20 Syakti, A. D., Hidayati, N. V., Jaya, Y. V., Siregar, S. H., Yude, R., Suhendy, L., Asia, L., Wong-Wah-Chung, P., & Doumenq, P. (2018). Simultaneous grading of microplastic size sampling in the Small Islands of Bintan water, Indonesia. Marine Pollution Bulletin, 137, 593-600. http://doi.org/10.1016/j.marpolbul.2018.11.005. PMid:30503472.

21 Khoironi, A., Hadiyanto, H., Anggoro, S., & Sudarno, S. (2020). Evaluation of polypropylene plastic degradation and microplastic identification in sediments at Tambak Lorok coastal area, Semarang, Indonesia. Marine Pollution Bulletin, 151, 110868. http://doi.org/10.1016/j.marpolbul.2019.110868. PMid:32056648.

22 Baptista, C. A., & Canevarolo, S. V. (2019). Grafting polypropylene over hollow glass microspheres by reactive extrusion. Polímeros: Ciência e Tecnologia, 29(3), e2019037. http://doi.org/10.1590/0104-1428.06118.

23 Hahladakis, J. N., Velis, C. A., Weber, R., Iacovidou, E., & Purnell, P. (2018). An overview of chemical additives present in plastics: migration, release, fate and environmental impact during their use, disposal and recycling. Journal of Hazardous Materials, 344, 179-199. http://doi.org/10.1016/j.jhazmat.2017.10.014. PMid:29035713.

24 Varghese, A. M., Rangaraj, V. M., Luckachan, G., & Mittal, V. (2020). UV aging behavior of functionalized mullite nanofiber-reinforced polypropylene. ACS Omega, 5(42), 27083-27093. http://doi.org/10.1021/acsomega.0c02437. PMid:33134668.

25 Senatova, S. I., Senatov, F. S., Kuznetsov, D. V., Stepashkin, A. A., & Issi, J. P. (2017). Effect of UV-radiation on structure and properties of PP nanocomposites. Journal of Alloys and Compounds, 707, 304-309. http://doi.org/10.1016/j.jallcom.2016.11.170.

26 Cunha, M. P., Grisa, A. M. C., Klein, J., Poletto, M., & Brandalise, R. N. (2018). Preparation and characterization of hollow glass microspheres- reinforced poly (acrylonitrile-co-butadiene-co-styrene) composites. Materials Research, 21(6), e20180201. http://doi.org/10.1590/1980-5373-mr-2018-0201.

27 Zhang, X., Liu, M., Chen, Y., He, J., Wang, X., Xie, J., Li, Z., Chen, Z., Fu, Y., Xiong, C., & Wang, S. (2022). Epoxy resin/hollow glass microspheres composite materials with low dielectric constant and excellent mechanical performance. Journal of Applied Polymer Science, 139(33), e52787. http://doi.org/10.1002/app.52787.

28 He, M., Sawut, A., Guan, L., Li, Y., & Yimit, M. (2021). Study on the weathering performance of polypropylene by artificial accelerated aging and natural aging. Journal of Polymer Materials, 38(3-4), 191-203. http://doi.org/10.32381/JPM.2021.38.3-4.2.

29 Weingart, N., Raps, D., Lamka, M., Demleitner, M., Altstädt, V., & Ruckdäschel, H. (2023). Influence of thermo-oxidative aging on the mechanical properties of the bead foams made of polycarbonate and polypropylene. Journal of Polymer Science, 61(21), 2742-2757. http://doi.org/10.1002/pol.20230267.

30 He, Z.-Q., Yang, Y., Yu, B., Yang, J.-P., Jiang, X.-B., Tian, B., Wang, M., Li, X.-Y., Sun, S.-Q., & Sun, H. (2022). Research on properties of hollow glass microspheres/epoxy resin composites applied in deep rock in-situ temperature-preserved coring. Petroleum Science, 19(2), 720-730. http://doi.org/10.1016/j.petsci.2021.10.028.

31 Afolabi, O. A., Kanny, K., & Mohan, T. P. (2022). Analysis of particle variation effect on flexural properties of hollow glass microsphere filled epoxy matrix syntactic foam composites. Polymers, 14(22), 4848. http://doi.org/10.3390/polym14224848. PMid:36432973.

32 Carvalho, G. B., Canevarolo, S. V., Jr., & Sousa, J. A. (2020). Influence of interfacial interactions on the mechanical behavior of hybrid composites of polypropylene / short glass fibers / hollow glass beads. Polymer Testing, 85, 106418. http://doi.org/10.1016/j.polymertesting.2020.106418.

33 Abbas, Z., Shahid, S., Nawab, Y., Shaker, K., & Umair, M. (2020). Effect of glass microspheres and fabric weave structure on mechanical performance of hemp/green epoxy composites. Polymer Composites, 41(11), 4771-4787. http://doi.org/10.1002/pc.25751.

34 Sai, B. L. N. K., & Tambe, P. (2022). Surface modified hollow glass microsphere reinforced 70/30 (wt/wt) PC/ABS blends: influence on rheological, mechanical, and thermo-mechanical properties. Composite Interfaces, 29(6), 617-641. http://doi.org/10.1080/09276440.2021.1986974.

35 Jang, K.-S. (2020). Low-density polycarbonate composites with robust hollow glass microspheres by tailorable processing variables. Polymer Testing, 84, 106408. http://doi.org/10.1016/j.polymertesting.2020.106408.

36 Wang, X., & Petru, M. (2020). Degradation of bending properties of flax fiber reinforced polymer after natural aging and accelerated aging. Construction & Building Materials, 240, 117909. http://doi.org/10.1016/j.conbuildmat.2019.117909.

37 La Mantia, F. P., Mistretta, M. C., & Titone, V. (2021). Rheological, mechanical and morphological characterization of monopolymer blends made by virgin and photo-oxidized polypropylene. Recycling, 6(3), 51. http://doi.org/10.3390/recycling6030051.

38 Pei, L., Ya, B., Ding, Z., Fan, Z., & Zhang, X. (2023). Effect of curing agents and hollow glass microspheres on the compression properties of syntactic foams. Journal of Materials Research and Technology, 27, 5321-5331. http://doi.org/10.1016/j.jmrt.2023.11.002.

39 Poulakis, J. G., & Papaspyrides, C. D. (1997). Recycling of polypropylene by the dissolution/reprecipitation technique: I. A model study. Resources, Conservation and Recycling, 20(1), 31-41. http://doi.org/10.1016/S0921-3449(97)01196-8.

40 Ha, K. H., & Kim, M. S. (2012). Application to refrigerator plastics by mechanical recycling from polypropylene in waste-appliances. Materials & Design, 34, 252-257. http://doi.org/10.1016/j.matdes.2011.08.014.

41 Cosse, R. L., Morais, A. C. L., Silva, L. R. C., Carvalho, L. H., Reis Sobrinho, J. F., Barbosa, R., & Alves, T. S. (2019). Preparation of syntactic foams made from green polyethylene and glass microspheres: morphological and mechanical characterization. Materials Research, 22(Suppl 1), e20190035. http://doi.org/10.1590/1980-5373-mr-2019-0035.

42 Ozkutlu, M., Dilek, C., & Bayram, G. (2018). Effects of hollow glass microsphere density and surface modification on the mechanical and thermal properties of poly(methyl methacrylate) syntactic foams. Composite Structures, 202, 545-550. http://doi.org/10.1016/j.compstruct.2018.02.088.
 

6825e91fa953952da57ae836 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections