Polypropylene reinforced with hollow glass microspheres: effect of thermal aging and reprocessing
Hiroshi Cavalcante Medeiros Koseki; Marlove Bergozza; Cristiano José de Farias Braz; Tatianny Soares Alves; Renata Barbosa
Abstract
Keywords
References
1 Gahleitner, M., & Paulik, C. (2017). Polypropylene and other polyolefins. In M. Gilbert (Ed.),
2 Vasile, C., & Pascu, M. (2005).
3 Alsabri, A., Tahir, F., & Al-Ghamdi, S. G. (2022). Environmental impacts of polypropylene (PP) production and prospects of its recycling in the GCC region.
4 Wypych, G. (2020). UV stabilizers and other components of formulations. In G. Wypych (Ed.),
5 Biswal, T., BadJena, S. K., & Pradhan, D. (2020). Synthesis of polymer composite materials and their biomedical applications.
6 DeArmitt, C., & Rothon, R. (2016). Particulate fillers, selection, and use in polymer composites. In S. Palsule (Ed.),
7 Ferreira, T. R. M., Lechtman, M. A., Dias, F. L., & Silva, A. B. (2022). Effect of hollow glass microspheres addition on density reduction and mechanical properties of PA6/glass fibers composites.
8 Imran, M., Rahaman, A., & Pal, S. (2019). Effect of low concentration hollow glass microspheres on mechanical and thermomechanical properties of epoxy composites.
9 Bharath, H. S., Bonthu, D., Prabhakar, P., & Doddamani, M. (2020). Three-dimensional printed lightweight composite foams.
10 Niazi, P., Karevan, M., & Javanbakht, M. (2023). Mechanical and thermal insulation performance of hollow glass microsphere (HGMS)/fumed silica/polyester microcomposite coating.
11 Maraveas, C., Kyrtopoulos, I. V., Arvanitis, K. G., & Bartzanas, T. (2024). The aging of polymers under electromagnetic radiation.
12 Qin, J., Jiang, J., Tao, Y., Zhao, S., Zeng, W., Shi, Y., Lu, T., Guo, L., Wang, S., Zhang, X., Jie, G., Wang, J., & Xiao, M. (2021). Sunlight tracking and concentrating accelerated weathering test applied in weatherability evaluation and service life prediction of polymeric materials: a review.
13 American Society for Testing and Materials – ASTM. (2022).
14 American Society for Testing and Materials – ASTM. (2018).
15 American Society for Testing and Materials – ASTM. (2023).
16 Hay, M. B., & Myneni, S. C. B. (2007). Structural environments of carboxyl groups in natural organic molecules from terrestrial systems. Part 1: infrared spectroscopy.
17 Larkin, P. J. (2017).
18 Fuente, E., Menéndez, J. A., Díez, M. A., Suárez, D., & Montes-Morán, M. A. (2003). Infrared spectroscopy of carbon materials: A quantum chemical study of model compounds.
19 Li, J., Wang, L., Xu, Z., Zhang, J., Li, J., Lu, X., Yan, R., & Tang, Y. (2023). A new point to correlate the multi-dimensional assessment for the aging process of microfibers.
20 Syakti, A. D., Hidayati, N. V., Jaya, Y. V., Siregar, S. H., Yude, R., Suhendy, L., Asia, L., Wong-Wah-Chung, P., & Doumenq, P. (2018). Simultaneous grading of microplastic size sampling in the Small Islands of Bintan water, Indonesia.
21 Khoironi, A., Hadiyanto, H., Anggoro, S., & Sudarno, S. (2020). Evaluation of polypropylene plastic degradation and microplastic identification in sediments at Tambak Lorok coastal area, Semarang, Indonesia.
22 Baptista, C. A., & Canevarolo, S. V. (2019). Grafting polypropylene over hollow glass microspheres by reactive extrusion.
23 Hahladakis, J. N., Velis, C. A., Weber, R., Iacovidou, E., & Purnell, P. (2018). An overview of chemical additives present in plastics: migration, release, fate and environmental impact during their use, disposal and recycling.
24 Varghese, A. M., Rangaraj, V. M., Luckachan, G., & Mittal, V. (2020). UV aging behavior of functionalized mullite nanofiber-reinforced polypropylene.
25 Senatova, S. I., Senatov, F. S., Kuznetsov, D. V., Stepashkin, A. A., & Issi, J. P. (2017). Effect of UV-radiation on structure and properties of PP nanocomposites.
26 Cunha, M. P., Grisa, A. M. C., Klein, J., Poletto, M., & Brandalise, R. N. (2018). Preparation and characterization of hollow glass microspheres- reinforced poly (acrylonitrile-co-butadiene-co-styrene) composites.
27 Zhang, X., Liu, M., Chen, Y., He, J., Wang, X., Xie, J., Li, Z., Chen, Z., Fu, Y., Xiong, C., & Wang, S. (2022). Epoxy resin/hollow glass microspheres composite materials with low dielectric constant and excellent mechanical performance.
28 He, M., Sawut, A., Guan, L., Li, Y., & Yimit, M. (2021). Study on the weathering performance of polypropylene by artificial accelerated aging and natural aging.
29 Weingart, N., Raps, D., Lamka, M., Demleitner, M., Altstädt, V., & Ruckdäschel, H. (2023). Influence of thermo-oxidative aging on the mechanical properties of the bead foams made of polycarbonate and polypropylene.
30 He, Z.-Q., Yang, Y., Yu, B., Yang, J.-P., Jiang, X.-B., Tian, B., Wang, M., Li, X.-Y., Sun, S.-Q., & Sun, H. (2022). Research on properties of hollow glass microspheres/epoxy resin composites applied in deep rock in-situ temperature-preserved coring.
31 Afolabi, O. A., Kanny, K., & Mohan, T. P. (2022). Analysis of particle variation effect on flexural properties of hollow glass microsphere filled epoxy matrix syntactic foam composites.
32 Carvalho, G. B., Canevarolo, S. V., Jr., & Sousa, J. A. (2020). Influence of interfacial interactions on the mechanical behavior of hybrid composites of polypropylene / short glass fibers / hollow glass beads.
33 Abbas, Z., Shahid, S., Nawab, Y., Shaker, K., & Umair, M. (2020). Effect of glass microspheres and fabric weave structure on mechanical performance of hemp/green epoxy composites.
34 Sai, B. L. N. K., & Tambe, P. (2022). Surface modified hollow glass microsphere reinforced 70/30 (wt/wt) PC/ABS blends: influence on rheological, mechanical, and thermo-mechanical properties.
35 Jang, K.-S. (2020). Low-density polycarbonate composites with robust hollow glass microspheres by tailorable processing variables.
36 Wang, X., & Petru, M. (2020). Degradation of bending properties of flax fiber reinforced polymer after natural aging and accelerated aging.
37 La Mantia, F. P., Mistretta, M. C., & Titone, V. (2021). Rheological, mechanical and morphological characterization of monopolymer blends made by virgin and photo-oxidized polypropylene.
38 Pei, L., Ya, B., Ding, Z., Fan, Z., & Zhang, X. (2023). Effect of curing agents and hollow glass microspheres on the compression properties of syntactic foams.
39 Poulakis, J. G., & Papaspyrides, C. D. (1997). Recycling of polypropylene by the dissolution/reprecipitation technique: I. A model study.
40 Ha, K. H., & Kim, M. S. (2012). Application to refrigerator plastics by mechanical recycling from polypropylene in waste-appliances.
41 Cosse, R. L., Morais, A. C. L., Silva, L. R. C., Carvalho, L. H., Reis Sobrinho, J. F., Barbosa, R., & Alves, T. S. (2019). Preparation of syntactic foams made from green polyethylene and glass microspheres: morphological and mechanical characterization.
42 Ozkutlu, M., Dilek, C., & Bayram, G. (2018). Effects of hollow glass microsphere density and surface modification on the mechanical and thermal properties of poly(methyl methacrylate) syntactic foams.