Polímeros: Ciência e Tecnologia
https://www.revistapolimeros.org.br/article/doi/10.1590/0104-1428.20240043
Polímeros: Ciência e Tecnologia
Original Article

Valorization of passion fruit: development, characterization and optimization of biodegradable edible films

Maria Clara Coutinho Macedo; Viviane Dias Medeiros Silva; Camila Gonçalves Rodrigues; Débora Tamires Vitor Pereira; Maria Aparecida Vieira Teixeira Garcia; Christiano Vieira Pires; Camila Argenta Fante

Downloads: 0
Views: 33

Abstract

This work aimed to develop biodegradable films from yellow passion fruit (Passiflora edulis f. flavicarpa) peel flour. The Central Composite Rotational Design was used in a total of 11 tests, in which the independent variables were the concentrations of starch and glycerol, characterized with regard to physical, mechanical and barrier properties. The films were classified as soluble and showed low permeability to water vapor. The tensile strength, elastic modulus and deformation rate were directly related to the concentration of starch and glycerol. The film of test 7 had the best characterization results; therefore, it was analyzed for biodegradability. As for biodegradability, the film obtained an average mass loss of 92.77 ± 4.28%, being a great alternative to the use of non-biodegradable polymers. The films showed acceptable degree of plasticization, which was favored by intermolecular interactions between the components of the flour, starch and glycerol.

 

 

Keywords

by-products, coating, fruits, packaging

References

1 Das, P., & Tiwari, P. (2018). Valorization of packaging plastic waste by slow pyrolysis. Resources, Conservation and Recycling, 128, 69-77. http://doi.org/10.1016/j.resconrec.2017.09.025.

2 Razavi, S. M. A., Mohammad Amini, A., & Zahedi, Y. (2015). Characterisation of a new biodegradable edible film based on sage seed gum: influence of plasticiser type and concentration. Food Hydrocolloids, 43, 290-298. http://doi.org/10.1016/j.foodhyd.2014.05.028.

3 Sun, X.-Z., Minowa, T., Yamaguchi, K., & Genchi, Y. (2015). Evaluation of energy consumption and greenhouse gas emissions from poly(phenyllactic acid) production using sweet sorghum. Journal of Cleaner Production, 87, 208-215. http://doi.org/10.1016/j.jclepro.2014.09.041.

4 Assis, O. B. G., & Britto, D. (2014). Revisão: coberturas comestíveis protetoras em frutas: fundamentos e aplicações. Brazilian Journal of Food Technology, 17(2), 87-97. http://doi.org/10.1590/bjft.2014.019.

5 Luvielmo, M., & Lamas, S. (2012). Edible coating in fruits. Estudos Tecnológicos em Engenharia, 8(1), 8-15. http://doi.org/10.4013/ete.2012.81.02.

6 Alcântara, S. R., Sousa, C. A. B., Almeida, F. A. C., & Gomes, J. P. (2013). Caracterização físico-química das farinhas do pendúnculo do caju e da casca do maracujá. Revista Brasileira de Produtos Agroindustriais, 15(4), 349-355. http://doi.org/10.15871/1517-8595/rbpa.v15n4p349-355.

7 Zeraik, M. L., Yariwake, J. H., Wauters, J.-N., Tits, M., & Angenot, L. (2012). Analysis of 570 passion fruit rinds (Passiflora edulis): isoorientin quantification by HPTLC and 571 evaluation of antioxidant (radical scavenging) capacity. Quimica Nova, 35(3), 541-545. http://doi.org/10.1590/S0100-40422012000300019.

8 Nascimento, T. A., Calado, V., & Carvalho, C. W. P. (2012). Development and characterization of flexible film based on starch and passion fruit mesocarp flour with nanoparticles. Food Research International, 49(1), 588-595. http://doi.org/10.1016/j.foodres.2012.07.051.

9 Pineli, L. L. O., Rodrigues, J. S. Q., Costa, A. M., Lima, H. C., Chiarello, M. D., & Melo, L. (2015). Antioxidants and sensory properties of the infusions of wild passiflora from Brazilian savannah: potential as functional beverages. Journal of the Science of Food and Agriculture, 95(7), 1500-1506. http://doi.org/10.1002/jsfa.6852. PMid:25087571.

10 Seixas, F. L., Fukuda, D. L., Turbiani, F. R. B., Garcia, P. S., Petkowicz, C. L. O., Jagadevan, S., & Gimenes, M. L. (2014). Extraction of pectin from passion fruit peel (Passiflora edulis f.flavicarpa) by microwave-induced heating. Food Hydrocolloids, 38, 186-192. http://doi.org/10.1016/j.foodhyd.2013.12.001.

11 Silva, J. B. A., Nascimento, T., Costa, L. A. S., Pereira, F. V., Machado, B. A., Gomes, G. V. P., Assis, D. J., & Druzian, J. I. (2015). Effect of source and interaction with nanocellulose cassava starch, glycerol and the properties of films bionanocomposites. Materials Today: Proceedings, 2(1), 200-207. http://doi.org/10.1016/j.matpr.2015.04.022.

12 Silva-Weiss, A., Ihl, M., Sobral, P. J. A., Gómez-Guillén, M. C., & Bifani, V. (2013). Natural additives in bioactive edible films and coatings: functionality and applications in foods. Food Engineering Reviews, 5(4), 200-216. http://doi.org/10.1007/s12393-013-9072-5.

13 Pelissari, F. M., Andrade-Mahecha, M. M., Sobral, P. J. A., & Menegalli, F. C. (2013). Comparative study on the properties of flour and starch films of plantain bananas (Musa paradisiaca). Food Hydrocolloids, 30(2), 681-690. http://doi.org/10.1016/j.foodhyd.2012.08.007.

14 American Society for Testing and Materials – ASTM. (2001). ASTM D882-12: Standard test method for tensile properties of thin plastic sheeting. West Conshohocken: ASTM International.

15 American Society for Testing and Materials – ASTM. (2013). ASTM F2251-13: standard test method for thickness measurement of flexible packaging material. West Conshohocken: ASTM International.

16 American Society for Testing and Materials – ASTM. (2015). ASTM D638-14: standard test method for tensile properties of plastics. West Conshohocken: ASTM International.

17 American Society for Testing and Materials – ASTM. (2016). ASTM E96/E96M-16: standard test methods for water vapor transmission of materials. West Conshohocken: ASTM International.

18 Instituto Adolfo Lutz – IAL. (1985). Analytical norms of the Adolfo Lutz Institute: physical-chemical methods for food analysis (2nd ed.). São Paulo: IAL.

19 Gontard, N., Duchez, C., Cuq, J.-L., & Guilbert, S. (1994). Edible composite films of wheat gluten and lipids: water vapour permeability and other physical properties. International Journal of Food Science & Technology, 29(1), 39-50. http://doi.org/10.1111/j.1365-2621.1994.tb02045.x.

20 Martucci, J. F., & Ruseckaite, R. A. (2009). Biodegradation of three-layer laminate films based on gelatin under indoor soil conditions. Polymer Degradation & Stability, 94(8), 1307-1313. http://doi.org/10.1016/j.polymdegradstab.2009.03.018.

21 Guilbert, S., & Gontard, N. (2005). Agro-polymers for edible and biodegradable films: review of agricultural polymeric materials, physical and mechanical characteristics. In J. H. Han (Ed.), Innovations in food packaging (pp. 263-276). London: Academic Press. http://doi.org/10.1016/B978-012311632-1/50048-6.

22 Cuq, B., Aymard, C., Cuq, J.-L., & Guilbert, S. (1995). Edible packaging films based on fish myofibrillar proteins: formulation and functional properties. Journal of Food Science, 60(6), 1369-1374. http://doi.org/10.1111/j.1365-2621.1995.tb04593.x.

23 Orue, A., Corcuera, M. A., Peña, C., Eceiza, A., & Arbelaiz, A. (2016). Bionanocomposites based on thermoplastic starch and cellulose nanofibers. Journal of Thermoplastic Composite Materials, 29(6), 817-832. http://doi.org/10.1177/0892705714536424.

24 Silva, V. D. M., Macedo, M. C. C., Rodrigues, C. G., Santos, A. N., Loyola, A. C. F., & Fante, C. A. (2020). Biodegradable edible films of ripe banana peel and starch enriched with extract of Eriobotrya japonica leaves. Food Bioscience, 38, 100750. http://doi.org/10.1016/j.fbio.2020.100750.

25 Cardoso, T., Demiate, I. M., & Danesi, E. D. G. (2017). Biodegradable films with Spirulina platensis as coating for cambuci peppers (Capsicum sp.). American Journal of Food Technology, 12(4), 236-244. http://doi.org/10.3923/ajft.2017.236.244.

26 Fakhouri, F. M., Martelli, S. M., Caon, T., Velasco, J. I., & Mei, L. H. I. (2015). Edible films and coatings based on starch/gelatin: film properties and effect of coatings on quality of refrigerated Red Crimson grapes. Postharvest Biology and Technology, 109, 57-64. http://doi.org/10.1016/j.postharvbio.2015.05.015.

27 Arquelau, P. B. F., Silva, V. D. M., Garcia, M. A. V. T., Araújo, R. L. B., & Fante, C. A. (2019). Characterization of edible coatings based on ripe “Prata” banana peel flour. Food Hydrocolloids, 89, 570-578. http://doi.org/10.1016/j.foodhyd.2018.11.029.

28 Maniglia, B. C., Domingos, J. R., Paula, R. L., & Tapia-Blácido, D. R. (2014). Development of bioactive edible film from turmeric dye solvent extraction residue. Lebensmittel-Wissenschaft + Technologie, 56(2), 269-277. http://doi.org/10.1016/j.lwt.2013.12.011.

29 Andrade-Mahecha, M. M., Tapia-Blácido, D. R., & Menegalli, F. C. (2012). Development and optimization of biodegradable films based on achira flour. Carbohydrate Polymers, 88(2), 449-458. http://doi.org/10.1016/j.carbpol.2011.12.024.

30 Mali, S., Sakanaka, L. S., Yamashita, F., & Grossmann, M. V. E. (2005). Water sorption and mechanical properties of cassava starch films and their relation to plasticizing effect. Carbohydrate Polymers, 60(3), 283-289. http://doi.org/10.1016/j.carbpol.2005.01.003.

31 Han, J. H., & Aristippos, G. (2005). Edible films and coatings: a review. In J. H. Han (Ed.), Innovations in food packaging (pp. 239-262). London: Academic Press. http://doi.org/10.1016/B978-012311632-1/50047-4.

32 Silva, E. C. O., Silva, W. P., Silva, E. T., Lopes, J. D., & Gusmão, R. P. (2016). Obtenção e caracterização da farinha do albedo de maracujá (Passiflora edulis f. Flavicarpa) para uso alimentício. Revista Verde de Agroecologia e Desenvolvimento Sustentável, 11(3), 69-74. http://doi.org/10.18378/rvads.v11i3.4062.

33 Rocha, G. O., Farias, M. G., Carvalho, C. W. P., Ascheri, J. L. R., & Galdeano, M. C. (2014). Biodegradable composite films based on cassava starch and soy protein. Polímeros: Ciência e Tecnologia, 24(5), 587-595. http://doi.org/10.1590/0104-1428.1355.

34 Bertuzzi, M. A., Armada, M., & Gottifredi, J. C. (2007). Physicochemical characterization of starch based films. Journal of Food Engineering, 82(1), 17-25. http://doi.org/10.1016/j.jfoodeng.2006.12.016.

35 Eça, K. S., Machado, M. T. C., Hubinger, M. D., & Menegalli, F. C. (2015). Development of active films from pectin and fruit extracts: light protection, antioxidant capacity, and compounds stability. Journal of Food Science, 80(11), C2389-C2396. http://doi.org/10.1111/1750-3841.13074. PMid:26444565.

36 Azwa, Z. N., Yousif, B. F., Manalo, A. C., & Karunasena, W. (2013). A review on the degradability of polymeric composites based on natural fibres. Materials & Design, 47, 424-442. http://doi.org/10.1016/j.matdes.2012.11.025.

37 Briassoulis, D., & Dejean, C. (2010). Critical review of norms and standards for biodegradable agricultural plastics part I. biodegradation in soil. Journal of Polymers and the Environment, 18(3), 384-400. http://doi.org/10.1007/s10924-010-0168-1.
 

6825e4cda953952bc6595613 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections