Polímeros: Ciência e Tecnologia
https://www.revistapolimeros.org.br/article/doi/10.1590/0104-1428.20240040
Polímeros: Ciência e Tecnologia
Original Article

Influence of alkali treatment on physical-mechanical properties of mallow fiber/BOPP composites

Hannah Alagoas Litaiff; Gabrielle Machado dos Santos; Gabriel de Melo; Claudia da Cunha; Virginia Mansanares Giacon

Downloads: 0
Views: 29

Abstract

This study investigated the impact of alkaline treatment on mallow fibers used as reinforcement in bi-axially oriented polypropylene (BOPP) waste composites. Fibers were treated with a 5% NaOH solution and characterized by XRD, FTIR, TGA, and tensile testing. Composites were fabricated with both untreated and treated fibers, and their physical, thermal, morphological, and mechanical properties were evaluated. XRD analysis revealed an increase in crystallinity index after treatment, correlating with enhanced breaking stress in treated fibers. Composites with treated fibers exhibited significantly reduced thickness swelling and water absorption, indicating improved fiber-matrix compatibility. SEM micrographs confirmed enhanced fiber-matrix adhesion in composites using treated fibers. Overall, the results demonstrate that alkali treatment significantly improves the properties of mallow fiber/BOPP composites, promoting their use as sustainable and eco-friendly materials. This research highlights the potential of valorizing agricultural waste and recycled plastics for the development of high-performance composites.

 

 

Keywords

lignocellulosic fiber, mercerization, polymer composite

References

1 Nurazzi, N. M., Asyraf, M. R. M., Rayung, M., Norrrahim, M. N. F., Shazleen, S. S., Rani, M. S. A., Shafi, A. R., Aisyah, H. A., Radzi, M. H. M., Sabaruddin, F. A., Ilyas, R. A., Zainudin, E. S., & Abdan, K. (2021). Thermogravimetric analysis properties of cellulosic natural fiber polymer composites: a review on influence of chemical treatments. Polymers, 13(16), 2710. http://doi.org/10.3390/polym13162710. PMid:34451248.

2 Shaker, K., Nawab, Y., & Jabbar, M. (2020). Bio-composites: eco-friendly substitute of glass fiber composites. In O. Kharissova, L. Martínez, & B. Kharisov (Eds.), Handbook of nanomaterials and nanocomposites for energy and environmental applications (pp. 1-25). Cham: Springer. http://doi.org/10.1007/978-3-030-11155-7_108-1.

3 Labib, W. A. (2022). Plant-based fibres in cement composites: a conceptual framework. Journal of Engineered Fibers and Fabrics, 17, 15589250221078922. http://doi.org/10.1177/15589250221078922.

4 Mousavi, S. R., Zamani, M. H., Estaji, S., Tayouri, M. I., Arjmand, M., Jafari, S. H., Nouranian, S., & Khonakdar, H. A. (2022). Mechanical properties of bamboo fiber-reinforced polymer composites: a review of recent case studies. Journal of Materials Science, 57(5), 3143-3167. http://doi.org/10.1007/s10853-021-06854-6.

5 Costa, U. O., Nascimento, L. F. C., Garcia, J. M., Bezerra, W. B. A., & Monteiro, S. N. (2020). Evaluation of Izod impact and bend properties of epoxy composites reinforced with mallow fibers. Journal of Materials Research and Technology, 9(1), 373-382. http://doi.org/10.1016/j.jmrt.2019.10.066.

6 Cunha, J. S. C., Oliveira, H. E., No., Giacon, V. M., Manzato, L., & Silva, C. G. (2021). Study on mechanical and thermal properties of amazon fibers on the polymeric biocomposites: malva and Tucum. Fibers and Polymers, 22(11), 3203-3211. http://doi.org/10.1007/s12221-021-0843-y.

7 Araújo, K. S., & Pereira, H. S. (2017). Public policies and natural fibers: the recent experience of the Amazonian malva and jute production chain. Amazonian Journal of Agricultural and Environmental Sciences, 60(1), 60-69. http://doi.org/10.4322/rca.60102.

8 Oliveira, P. F., & Marques, M. F. V. (2015). Chemical treatment of natural malva fibers and preparation of green composites with poly (3-hydroxybutyrate). Chemistry & Chemical Technology, 9(2), 211-222. http://doi.org/10.23939/chcht09.02.211.

9 Liu, W., Cheng, L., & Li, S. (2018). Review of electrical properties for polypropylene based nanocomposite. Composites Communications, 10, 221-225. http://doi.org/10.1016/j.coco.2018.10.007.

10 Ščetar, M., Kurek, M., Režek Jambrak, A., Debeaufort, F., & Galić, K. (2017). Influence of high power ultrasound on physical–chemical properties of polypropylene films aimed for food packaging: barrier and contact angle features. Polymer International, 66(11), 1572-1578. http://doi.org/10.1002/pi.5415.

11 Yugue, E. T., Mancini, S. D., & Roveda, J. A. F. (2022). Desafios e potenciais soluções para reciclagem de embalagens plásticas flexíveis pós-consumo no Brasil. Revista DAE, 70(237), 100-120. http://doi.org/10.36659/dae.2022.055.

12 Rohit, K., & Dixit, S. (2016). Mechanical properties of waste biaxially oriented polypropylene metallized films (BOPP), LLDPE: LDPE films with sisal fibres. American Journal of Engineering and Applied Sciences, 9(4), 913-920. http://doi.org/10.3844/ajeassp.2016.913.920.

13 Lee, C. H., Khalina, A., & Lee, S. H. (2021). Importance of interfacial adhesion condition on characterization of plant-fiber-reinforced polymer composites: a review. Polymers, 13(3), 438. http://doi.org/10.3390/polym13030438. PMid:33573036.

14 Nunes, J. V. S., Silva, E. X. B., Miranda, M. H. P., Rios, A. S., & Deus, E. P. (2022). Caracterização mecânica e morfológica de fibras de coco tratadas superficialmente para utilização como reforço em polímeros. Matéria, 27(2), e20220046. http://doi.org/10.1590/1517-7076-rmat-2022-0046.

15 Rebelo, V., da Silva, Y., Ferreira, S., Filho, R. T., & Giacon, V. (2019). Effects of mercerization in the chemical and morphological properties of Amazon Piassava. Polímeros: Ciência e Tecnologia, 29(1), e2019013. http://doi.org/10.1590/0104-1428.01717.

16 Tavares, F. F. C., Almeida, M. D. C., Silva, J. A. P., Araújo, L. L., Cardozo, N. S. M., & Santana, R. M. C. (2020). Thermal treatment of açaí (Euterpe oleracea) fiber for composite reinforcement. Polímeros: Ciência e Tecnologia, 30(1), e2020003. http://doi.org/10.1590/0104-1428.09819.

17 Giacon, V. M., Rebelo, V. S. M., Santos, G. M., Sanches, E. A., Fiorelli, J., Costella, Â. M. S., Melo, G. M. M., & Brito, L. M. A. F. (2021). Influence of mercerization on the physical and mechanical properties of polymeric composites reinforced with Amazonian Fiber. Fibers and Polymers, 22(7), 1950-1956. http://doi.org/10.1007/s12221-021-0460-9.

18 Segal, L., Creely, J. J., Martin, A. E., Jr., & Conrad, C. M. (1959). An Empirical method for estimating the degree of crystallinity of native cellulose using the X-Ray diffractometer. Textile Research Journal, 29(10), 786-794. http://doi.org/10.1177/004051755902901003.

19 American Society for Testing and Materials – ASTM. (1975). ASTM D3379-75: standard test method for tensile strength and young’s modulus for high-modulus. West Conshohocken, PA: ASTM International.

20 Chatterjee, A., Kumar, S., & Singh, H. (2020). Tensile strength and thermal behavior of jute fibre reinforced polypropylene laminate composite. Composites Communications, 22, 100483. http://doi.org/10.1016/j.coco.2020.100483.

21 Associação Brasileira de Normas Técnicas – ABNT. (2019). ABNT NBR 15316-2:2019: painéis de fibras de média densidade - parte 2: requisitos e métodos de ensaio. Rio de Janeiro: ABNT.

22 American Society for Testing and Materials – ASTM. (2022). ASTM D570-22: standard test method for water absorption of plastics. West Conshohocken, PA: ASTM International.

23 American Society for Testing and Materials – ASTM. (2021). ASTM D7984-21: standard test method for measurement of thermal effusivity of fabrics using a Modified Transient Plane Source (MTPS) instrument. West Conshohocken, PA: ASTM International.

24 American Society for Testing and Materials – ASTM. (2010). ASTM D256-10: standard test methods for determining the izod pendulum impact resistance of plastics. West Conshohocken, PA: ASTM International.

25 Tkachenko, T. V., Kamenskyh, D. S., Sheludko, Y. V., & Yevdokymenko, V. O. (2022). Structural and morphological features of microcrystalline cellulose from soybean straw by organosolvent treatment. Chemistry. Physics and Technology of Surface, 13(4), 455-466. http://doi.org/10.15407/hftp13.04.455.

26 Gabriel, T., Belete, A., Hause, G., Neubert, R. H. H., & Gebre-Mariam, T. (2022). Is mercerization the only factor for (Partial) polymorphic transition of cellulose I to cellulose II in cellulose nanocrystals? Cellulose Chemistry and Technology, 56(5-6), 495-507. http://doi.org/10.35812/CelluloseChemTechnol.2022.56.42.

27 Shahril, S. M., Ridzuan, M. J. M., Majid, M. A., Bariah, A. M. N., Rahman, M. T. A., & Narayanasamy, P. (2022). Alkali treatment influence on cellulosic fiber from Furcraea foetida leaves as potential reinforcement of polymeric composites. Journal of Materials Research and Technology, 19, 2567-2583. http://doi.org/10.1016/j.jmrt.2022.06.002.

28 Suryanto, H., Sukarni, S., Pradana, Y. R. A., Yanuhar, U., & Witono, K. (2019). Effect of mercerization on properties of mendong (Fimbristylis globulosa) fiber. Songklanakarin Journal of Science and Technology, 41(3), 624-630. http://doi.org/10.14456/sjst-psu.2019.73.

29 Monteiro, S. N., Margem, F. M., Margem, J. I., Martins, L. B. S., Oliveira, C. G., & Oliveira, M. P. (2014). Infra-red spectroscopy analysis of malva fibers. Materials Science Forum, 775-776, 255-260. http://doi.org/10.4028/www.scientific.net/MSF.775-776.255.

30 Furtado, J. B. M., Furtado, P. A., Fo, Oliveira, T. P., Caetano, M. R. S., Araújo, I. M. S., Figueiredo, F. C., & Santos, J. R., Jr. (2020). Caracterização química da fibra do caule da palmeira de babaçu natural e após tratamento. Revista de Engenharia e Pesquisa Aplicada, 5(3), 56-64. http://doi.org/10.25286/repa.v5i3.1254.

31 Fatkhurrohman, Rochardjo, H. S. B., Kusumaatmaja, A., & Yudhanto, F. (2019). Extraction and effect of vibration duration in ultrasonic process of cellulose nanocrystal (CNC) from ramie fiber. In Proceedings of the 1st International Seminar on Advances in Metallurgy and Materials (i-SENAMM 2019) (pp. 030004). Jakarta: AIP Publishing. http://doi.org/10.1063/5.0015794.

32 Asim, M., Paridah, M. T., Chandrasekar, M., Shahroze, R. M., Jawaid, M., Nasir, M., & Siakeng, R. (2020). Thermal stability of natural fibers and their polymer composites. Iranian Polymer Journal, 29(7), 625-648. http://doi.org/10.1007/s13726-020-00824-6.

33 Xia, L., Zhang, C., Wang, A., Wang, Y., & Xu, W. (2020). Morphologies and properties of Juncus effusus fiber after alkali treatment. Cellulose, 27(4), 1909-1920. http://doi.org/10.1007/s10570-019-02933-9.

34 Ornaghi, H. L., Jr., Ornaghi, F. G., Neves, R. M., Monticeli, F., & Bianchi, O. (2020). Mechanisms involved in thermal degradation of lignocellulosic fibers: a survey based on chemical composition. Cellulose (London, England), 27(9), 4949-4961. http://doi.org/10.1007/s10570-020-03132-7.

35 Singh, J. K., & Rout, A. K. (2022). Characterization of raw and alkali-treated cellulosic fibers extracted from Borassus flabellifer L. Biomass Conversion and Biorefinery, 14(10), 11633-11646. http://doi.org/10.1007/s13399-022-03238-x.

36 Laverde, V., Marin, A., Benjumea, J. M., & Ortiz, M. R. (2022). Use of vegetable fibers as reinforcements in cement-matrix composite materials: a review. Construction & Building Materials, 340, 127729. http://doi.org/10.1016/j.conbuildmat.2022.127729.

37 Silva, F. M. (2018). Caracterização mecânica de um compósito de matriz poliéster insaturado reforçado com fibras de sisal em diferentes orientações utilizando correlação digital de imagens (Master's thesis). Universidade Federal Rural do Semiárido, Mossoró.

38 Baskaran, P. G., Kathiresan, M., & Pandiarajan, P. (2022). Effect of alkali-treatment on structural, thermal, tensile properties of dichrostachys cinerea bark fiber and its composites. Journal of Natural Fibers, 19(2), 433-449. http://doi.org/10.1080/15440478.2020.1745123.

39 Arul Marcel Moshi, A., Ravindran, D., Sundara Bharathi, S. R., Padma, S. R., Indran, S., & Divya, D. (2020). Characterization of natural cellulosic fiber extracted from Grewia damine flowering plant’s stem. International Journal of Biological Macromolecules, 164, 1246-1255. http://doi.org/10.1016/j.ijbiomac.2020.07.225. PMid:32738327.

40 Fonseca, R. P. (2021). Influência de diferentes tipos de fibras vegetais amazônicas no desempenho de uma argamassa a base de cimento Portland e Metacaulim (Doctoral dissertation). Universidade Federal de Santa Catarina, Florianópolis.

41 British Standards Institution – BSI. (1993). EN 317:1993: particleboards and fiberboards: determination of swelling in thickness after immersion in water. London: BSI.

42 Kamaruddin, Z. H., Jumaidin, R., Ilyas, R. A., Selamat, M. Z., Alamjuri, R. H., & Md Yusof, F. A. (2022). Influence of Alkali treatment on the mechanical, thermal, water absorption, and biodegradation properties of cymbopogan citratus fiber-reinforced, thermoplastic cassava starch–palm wax composites. Polymers, 14(14), 2769. http://doi.org/10.3390/polym14142769. PMid:35890548.

43 Aparicio, R. R. (2019). Influência das razões de pré-polímero na matriz poliuretânica de óleo de mamona em compósito com alto teor fibras de fibras de piaçava da Amazônia (Master's thesis). Universidade Federal do Amazonas, Manaus.

44 Marinho, N. P. (2012). Características das fibras do bambu (Dendrocalamus giganteus) e potencial de aplicação em painéis de fibra de média densidade (MDF) (Master's thesis). Universidade Tecnológica Federal do Paraná, Curitiba.

45 Fiorelli, J., Galo, R. G., Castro, S. L., Jr., Belini, U. L., Lasso, P. R. O., & Savastano, H., Jr. (2018). Multilayer particleboard produced with agroindustrial waste and Amazonia vegetable fibres. Waste and Biomass Valorization, 9(7), 1151-1161. http://doi.org/10.1007/s12649-017-9889-x.

46 Sudha, S., & Thilagavathi, G. (2018). Analysis of electrical, thermal and compressive properties of alkali-treated jute fabric reinforced composites. Journal of Industrial Textiles, 47(6), 1407-1423. http://doi.org/10.1177/1528083717695840.

47 Jena, H., Kumar Pradhan, A., & Kumar Pandit, M. (2017). Effect of cenosphere on thermal conductivity of bamboo fibre reinforced composites. Advanced Materials & Processes, 2(2), 97-102. http://doi.org/10.5185/amp.2017/207.

48 Scalioni, L. V., Gutiérrez, M. C., & Felisberti, M. I. (2017). Green composites of poly(3-hydroxybutyrate) and curaua fibers: morphology and physical, thermal, and mechanical properties. Journal of Applied Polymer Science, 134(14), 44676. http://doi.org/10.1002/app.44676.

49 Karwa, R., & Karwa, R. (2020). One-dimensional steady-state heat conduction. In: R. Karwa (Ed.), Heat and mass transfer (pp. 7-112). Singapore: Springer. http://doi.org/10.1007/978-981-15-3988-6_2.

50 Marichelvam, M. K., Manimaran, P., Verma, A., Sanjay, M. R., Siengchin, S., Kandakodeeswaran, K., & Geetha, M. (2021). A novel palm sheath and sugarcane bagasse fiber based hybrid composites for automotive applications: an experimental approach. Polymer Composites, 42(1), 512-521. http://doi.org/10.1002/pc.25843.

51 Senthilkumar, K., Rajini, N., Saba, N., Chandrasekar, M., Jawaid, M., & Siengchin, S. (2019). Effect of alkali treatment on mechanical and morphological properties of pineapple leaf fibre/polyester composites. Journal of Polymers and the Environment, 27(6), 1191-1201. http://doi.org/10.1007/s10924-019-01418-x.

52 Goud, G., & Rao, R. N. (2011). Effect of fibre content and alkali treatment on mechanical properties of Roystonea regia-reinforced epoxy partially biodegradable composites. Bulletin of Materials Science, 34(7), 1575-1581. http://doi.org/10.1007/s12034-011-0361-4.

53 Beltrami, L. V. R., Scienza, L. C., & Zattera, A. J. (2014). Efeito do tratamento alcalino de fibras de Curauá sobre as propriedades de compósitos de matriz biodegradável. Polímeros: Ciência e Tecnologia, 24(3), 388-394. http://doi.org/10.4322/polimeros.2014.024.

54 Sá, B. S. R. (2019). Obtenção e caracterização do compósito de polipropileno reciclado com fibra de palmeira-real (Archontophoenix cunninghamiana) (Master's thesis). Universidade Tecnológica Federal do Paraná, Londrina.
 

6825e819a953952d702482a2 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections