Influence of alkali treatment on physical-mechanical properties of mallow fiber/BOPP composites
Hannah Alagoas Litaiff; Gabrielle Machado dos Santos; Gabriel de Melo; Claudia da Cunha; Virginia Mansanares Giacon
Abstract
Keywords
References
1 Nurazzi, N. M., Asyraf, M. R. M., Rayung, M., Norrrahim, M. N. F., Shazleen, S. S., Rani, M. S. A., Shafi, A. R., Aisyah, H. A., Radzi, M. H. M., Sabaruddin, F. A., Ilyas, R. A., Zainudin, E. S., & Abdan, K. (2021). Thermogravimetric analysis properties of cellulosic natural fiber polymer composites: a review on influence of chemical treatments.
2 Shaker, K., Nawab, Y., & Jabbar, M. (2020). Bio-composites: eco-friendly substitute of glass fiber composites. In O. Kharissova, L. Martínez, & B. Kharisov (Eds.),
3 Labib, W. A. (2022). Plant-based fibres in cement composites: a conceptual framework.
4 Mousavi, S. R., Zamani, M. H., Estaji, S., Tayouri, M. I., Arjmand, M., Jafari, S. H., Nouranian, S., & Khonakdar, H. A. (2022). Mechanical properties of bamboo fiber-reinforced polymer composites: a review of recent case studies.
5 Costa, U. O., Nascimento, L. F. C., Garcia, J. M., Bezerra, W. B. A., & Monteiro, S. N. (2020). Evaluation of Izod impact and bend properties of epoxy composites reinforced with mallow fibers.
6 Cunha, J. S. C., Oliveira, H. E., No., Giacon, V. M., Manzato, L., & Silva, C. G. (2021). Study on mechanical and thermal properties of amazon fibers on the polymeric biocomposites: malva and Tucum.
7 Araújo, K. S., & Pereira, H. S. (2017). Public policies and natural fibers: the recent experience of the Amazonian malva and jute production chain.
8 Oliveira, P. F., & Marques, M. F. V. (2015). Chemical treatment of natural malva fibers and preparation of green composites with poly (3-hydroxybutyrate).
9 Liu, W., Cheng, L., & Li, S. (2018). Review of electrical properties for polypropylene based nanocomposite.
10 Ščetar, M., Kurek, M., Režek Jambrak, A., Debeaufort, F., & Galić, K. (2017). Influence of high power ultrasound on physical–chemical properties of polypropylene films aimed for food packaging: barrier and contact angle features.
11 Yugue, E. T., Mancini, S. D., & Roveda, J. A. F. (2022). Desafios e potenciais soluções para reciclagem de embalagens plásticas flexíveis pós-consumo no Brasil.
12 Rohit, K., & Dixit, S. (2016). Mechanical properties of waste biaxially oriented polypropylene metallized films (BOPP), LLDPE: LDPE films with sisal fibres.
13 Lee, C. H., Khalina, A., & Lee, S. H. (2021). Importance of interfacial adhesion condition on characterization of plant-fiber-reinforced polymer composites: a review.
14 Nunes, J. V. S., Silva, E. X. B., Miranda, M. H. P., Rios, A. S., & Deus, E. P. (2022). Caracterização mecânica e morfológica de fibras de coco tratadas superficialmente para utilização como reforço em polímeros.
15 Rebelo, V., da Silva, Y., Ferreira, S., Filho, R. T., & Giacon, V. (2019). Effects of mercerization in the chemical and morphological properties of Amazon Piassava.
16 Tavares, F. F. C., Almeida, M. D. C., Silva, J. A. P., Araújo, L. L., Cardozo, N. S. M., & Santana, R. M. C. (2020). Thermal treatment of açaí (
17 Giacon, V. M., Rebelo, V. S. M., Santos, G. M., Sanches, E. A., Fiorelli, J., Costella, Â. M. S., Melo, G. M. M., & Brito, L. M. A. F. (2021). Influence of mercerization on the physical and mechanical properties of polymeric composites reinforced with Amazonian Fiber.
18 Segal, L., Creely, J. J., Martin, A. E., Jr., & Conrad, C. M. (1959). An Empirical method for estimating the degree of crystallinity of native cellulose using the X-Ray diffractometer.
19 American Society for Testing and Materials – ASTM. (1975).
20 Chatterjee, A., Kumar, S., & Singh, H. (2020). Tensile strength and thermal behavior of jute fibre reinforced polypropylene laminate composite.
21 Associação Brasileira de Normas Técnicas – ABNT. (2019).
22 American Society for Testing and Materials – ASTM. (2022).
23 American Society for Testing and Materials – ASTM. (2021).
24 American Society for Testing and Materials – ASTM. (2010). A
25 Tkachenko, T. V., Kamenskyh, D. S., Sheludko, Y. V., & Yevdokymenko, V. O. (2022). Structural and morphological features of microcrystalline cellulose from soybean straw by organosolvent treatment.
26 Gabriel, T., Belete, A., Hause, G., Neubert, R. H. H., & Gebre-Mariam, T. (2022). Is mercerization the only factor for (Partial) polymorphic transition of cellulose I to cellulose II in cellulose nanocrystals?
27 Shahril, S. M., Ridzuan, M. J. M., Majid, M. A., Bariah, A. M. N., Rahman, M. T. A., & Narayanasamy, P. (2022). Alkali treatment influence on cellulosic fiber from Furcraea foetida leaves as potential reinforcement of polymeric composites.
28 Suryanto, H., Sukarni, S., Pradana, Y. R. A., Yanuhar, U., & Witono, K. (2019). Effect of mercerization on properties of mendong (
29 Monteiro, S. N., Margem, F. M., Margem, J. I., Martins, L. B. S., Oliveira, C. G., & Oliveira, M. P. (2014). Infra-red spectroscopy analysis of malva fibers.
30 Furtado, J. B. M., Furtado, P. A., Fo, Oliveira, T. P., Caetano, M. R. S., Araújo, I. M. S., Figueiredo, F. C., & Santos, J. R., Jr. (2020). Caracterização química da fibra do caule da palmeira de babaçu natural e após tratamento.
31 Fatkhurrohman, Rochardjo, H. S. B., Kusumaatmaja, A., & Yudhanto, F. (2019). Extraction and effect of vibration duration in ultrasonic process of cellulose nanocrystal (CNC) from ramie fiber. In
32 Asim, M., Paridah, M. T., Chandrasekar, M., Shahroze, R. M., Jawaid, M., Nasir, M., & Siakeng, R. (2020). Thermal stability of natural fibers and their polymer composites.
33 Xia, L., Zhang, C., Wang, A., Wang, Y., & Xu, W. (2020). Morphologies and properties of Juncus effusus fiber after alkali treatment.
34 Ornaghi, H. L., Jr., Ornaghi, F. G., Neves, R. M., Monticeli, F., & Bianchi, O. (2020). Mechanisms involved in thermal degradation of lignocellulosic fibers: a survey based on chemical composition.
35 Singh, J. K., & Rout, A. K. (2022). Characterization of raw and alkali-treated cellulosic fibers extracted from
36 Laverde, V., Marin, A., Benjumea, J. M., & Ortiz, M. R. (2022). Use of vegetable fibers as reinforcements in cement-matrix composite materials: a review.
37 Silva, F. M. (2018).
38 Baskaran, P. G., Kathiresan, M., & Pandiarajan, P. (2022). Effect of alkali-treatment on structural, thermal, tensile properties of dichrostachys cinerea bark fiber and its composites.
39 Arul Marcel Moshi, A., Ravindran, D., Sundara Bharathi, S. R., Padma, S. R., Indran, S., & Divya, D. (2020). Characterization of natural cellulosic fiber extracted from Grewia damine flowering plant’s stem.
40 Fonseca, R. P. (2021).
41 British Standards Institution – BSI. (1993).
42 Kamaruddin, Z. H., Jumaidin, R., Ilyas, R. A., Selamat, M. Z., Alamjuri, R. H., & Md Yusof, F. A. (2022). Influence of Alkali treatment on the mechanical, thermal, water absorption, and biodegradation properties of cymbopogan citratus fiber-reinforced, thermoplastic cassava starch–palm wax composites.
43 Aparicio, R. R. (2019
44 Marinho, N. P. (2012).
45 Fiorelli, J., Galo, R. G., Castro, S. L., Jr., Belini, U. L., Lasso, P. R. O., & Savastano, H., Jr. (2018). Multilayer particleboard produced with agroindustrial waste and Amazonia vegetable fibres.
46 Sudha, S., & Thilagavathi, G. (2018). Analysis of electrical, thermal and compressive properties of alkali-treated jute fabric reinforced composites.
47 Jena, H., Kumar Pradhan, A., & Kumar Pandit, M. (2017). Effect of cenosphere on thermal conductivity of bamboo fibre reinforced composites.
48 Scalioni, L. V., Gutiérrez, M. C., & Felisberti, M. I. (2017). Green composites of poly(3-hydroxybutyrate) and curaua fibers: morphology and physical, thermal, and mechanical properties.
49 Karwa, R., & Karwa, R. (2020). One-dimensional steady-state heat conduction. In: R. Karwa (Ed.),
50 Marichelvam, M. K., Manimaran, P., Verma, A., Sanjay, M. R., Siengchin, S., Kandakodeeswaran, K., & Geetha, M. (2021). A novel palm sheath and sugarcane bagasse fiber based hybrid composites for automotive applications: an experimental approach.
51 Senthilkumar, K., Rajini, N., Saba, N., Chandrasekar, M., Jawaid, M., & Siengchin, S. (2019). Effect of alkali treatment on mechanical and morphological properties of pineapple leaf fibre/polyester composites.
52 Goud, G., & Rao, R. N. (2011). Effect of fibre content and alkali treatment on mechanical properties of Roystonea regia-reinforced epoxy partially biodegradable composites.
53 Beltrami, L. V. R., Scienza, L. C., & Zattera, A. J. (2014). Efeito do tratamento alcalino de fibras de Curauá sobre as propriedades de compósitos de matriz biodegradável.
54 Sá, B. S. R. (2019).