Fungal biocomposites production from packaging industry residue: PET-coated SBS paperboard
Nicole Fernanda Souza; Mariane Bonatti-Chaves; Denise Abatti Kasper Silva; Josiane Costa Riani; Elisabeth Wisbeck
Abstract
Keywords
References
1 Landim, A. P. M., Bernardo, C. O., Martins, I. B. A., Francisco, M. R., Santos, M. B., & Melo, N. R. (2016). Sustainability concerning food packaging in Brazil.
2 Ito, D. (2009). Desenvolvimento de materiais de embalagens para forno de micro-ondas.
3 Ferri, G. N. (2015).
4 Berdugo-Clavijo, C., Scheffer, G., Sen, A., & Gieg, L. M. (2022). Biodegradation of polymers used in oil and gas operations: towards enzyme biotechnology development and field application.
5 Khalid, M. Y., & Arif, Z. U. (2022). Novel biopolymer-based sustainable composites for food packaging applications: A narrative review.
6 Xie, Y., Gao, S., Zhang, D., Wang, C., & Chu, F. (2023). Bio-based polymeric materials synthesized from renewable resources: A mini-review.
7 Bayer, E., McIntyre, G., & Swersey, B. L. (2008). US 2008 0145577 A1. USA: United States Patent Application. Retrieved in 2024, March 28, from
8 Ecovative. (2023, March 17). Retrieved in 2024, March 28, from
9 Maisnam, D., Rasane, P., Dey, A., Kaur, S., & Sarma, C. (2017). Recent advances in conventional drying of foods.
10 Shukla, S. (2011). Freeze drying process: A review.
11 Giri, S. K., & Prasad, S. (2006). Modeling shrinkage and density changes during microwave-vacuum drying of button mushroom.
12 Rahman, M. S., Al-Amri, O. S., & Al-Bulushi, I. M. (2002). Pores and physico-chemical characteristics of dried tuna produced by different methods of drying.
13 Yang, Z., Zhang, F., Still, B., White, M., & Amstislavski, P. (2017). Physical and mechanical properties of fungal mycelium-based biofoam.
14 Appels, F. V. W., Camere, S., Montalti, M., Karana, E., Jansen, K. M. B., Dijksterhuis, J., Krijgsheld, P., & Wösten, H. A. B. (2019). Fabrication factors influencing mechanical, moisture- and water-related properties of mycelium-based composites.
15 Bruscato, C., Malvessi, E., Brandalise, R. N., & Camassola, M. (2019). High performance of macrofungi in the production of mycelium-based biofoams using sawdust: sustainable technology for waste reduction.
16 Ghazvinian, A., Farrokhsiar, P., Vieira, F., Pecchia, J., & Gursoy, B. (2019). Mycelium-based bio-composites for architecture: assessing the effects of cultivation factors on compressive strength. In J. P. Sousa, G. C. Henriques, & J. P. Xavier (Eds.),
17 Jones, M., Mautner, A., Luenco, S., Bismarck, A., & John, S. (2020). Engineered mycelium composite construction materials from fungal biorefineries: A critical review.
18 Rocha, M. I., Benkendorf, S., Gern, R. M. M., Riani, J. C., & Wisbeck, E. (2020). Desenvolvimento de biocompósitos fúngicos utilizando resíduos industriais.
19 Aquino, M., Rugolo, M., Robledo, G., & Kuhar, F. (2022). Evaluation of mycelium composite materials produced by five Patagonian fungal species.
20 Kenig-Witkowska, M. (2017). The concept of sustainable development in the European Union policy and law.
21 Miles, P. G., & Chang, S. T. (2004).
22 Faria, P. C., Wisbeck, E., & Dias, L. C. (2015). Biodegradação de polipropileno reciclado (PPR) e de poli(tereftalato de etileno) reciclado (PETR) por
23 Santos, B. C., Silva, K. C., Bonatti-Chaves, M., & Wisbeck, E. (2021). Produção de cogumelos de Pleurotus sajor-caju em resíduos de embalagens de papel cartão revestido com PET. In
24 Furlan, S. A., Virmond, L. J., Miers, D. A., Bonatti, M., Gern, R. M. M., & Jonas, R. (1997). Mushroom strains able to grow at high temperatures and low pH values.
25 Bonatti, M., Karnopp, P., Soares, H. M., & Furlan, S. A. (2004). Evaluation of
26 Associação Brasileira de Normas Técnicas (2016).
27 Hossen, M. R., Talbot, M. W., Kennard, R., Bousfield, D. W., & Mason, M. D. (2020). A comparative study of methods for porosity determination of cellulose-based porous materials.
28 American Society for Testing and Materials (1999).
29 Rorabacher, D. B. (1991). Statistical treatment for rejection of deviant values: critical values of Dixon’s “Q” parameter and related subrange ratios at the 95% confidence level.
30 Deschamps, J. L. N. (2020).
31 Deacon, J. W. (2006).
32 Reis, F. R., Masson, M. L., & Waszczynskyj, N. (2006). Efeitos da secagem convectiva e a vácuo sobre parâmetros de qualidade de fatias de berinjela.
33 Ma, X., Chang, P. R., Yu, J., & Stumborg, M. (2009). Properties of biodegradable citric acid-modified granular starch/thermoplastic pea starch composites.
34 Klyosov, A. A. (2007).
35 Sjöqvist, M., Boldizar, A., & Rigdahl, M. (2010). Processing and water absorption behaviour of foamed potato starch.
36 Girometta, C., Picco, A. M., Baiguera, R. M., Dondi, D., Babbini, S., Cartabia, M., Pellegrini, M., & Savino, E. (2019). Physico-mechanical and thermodynamic properties of mycelium-based biocomposites: A review.
37 Sánchez-Vázquez, J. E., & Royse, D. J. (2001).
38 Cha, J. S. (2004). Pest and disease management. In R. Gush & J. Poppe (Eds.),
39 Ziegler, A. R., Bajwa, S. G., Holt, G. A., McIntyre, G., & Bajwa, D. S. (2016). Evaluation of physico-mechanical properties of mycelium reinforced green biocomposites made from cellulosic fibers.
40 Dai, C., Yu, C., & Zhou, X. (2007). Heat and mass transfer in wood composite panels during hot pressing. Part II. Modeling void formation and mat permeability.
41 Associação Brasileira de Normas Técnicas (2016).
42 Thibault, B., Aghajanzadeh, S., Sultana, A., Ratti, C., & Khalloufi, S. (2024). Characteristics of open and closed pores, their measurement techniques and exploitation in dehydrated food products.
43 Lelivelt, R. J. J. (2015).
44 López-Nava, J. A., González, J. M., Chacón, X. R., & Luna, J. A. N. (2016). Assessment of edible fungi and films bio-based material simulating expanded polystyrene.
45 Mano, J. F., Koniarova, D., & Reis, R. L. (2003). Thermal properties of thermoplastic starch/synthetic polymer blends with potential biomedical applicability.
46 Sánchez, R., Espinosa, E., Domínguez-Robles, J., Loaiza, J. M., & Rodríguez, A. (2016). Isolation and characterization of lignocellulose nanofibers from different wheat straw pulps.
47 Alemdar, A., & Sain, M. (2008). Biocomposites from wheat straw nanofibers: Morphology, thermal and mechanical properties.
48 Smith, B. C. (2022). Infrared spectroscopy of polymers, VIII: polyesters and the rule of three.