Polímeros: Ciência e Tecnologia
https://www.revistapolimeros.org.br/article/doi/10.1590/0104-1428.20240038
Polímeros: Ciência e Tecnologia
Original Article

Fungal biocomposites production from packaging industry residue: PET-coated SBS paperboard

Nicole Fernanda Souza; Mariane Bonatti-Chaves; Denise Abatti Kasper Silva; Josiane Costa Riani; Elisabeth Wisbeck

Downloads: 0
Views: 37

Abstract

Packaging generates approximately 40 tons/month of waste from Solid Bleached Sulfate (SBS) paperboard coated with Poly (Ethylene Terephthalate) PET. Concerns about environmental sustainability are pushing innovative materials with diverse applications to replace conventional synthetic materials. Biocomposites, which use fungal mycelium as a binder for the particles, are an emerging option in biodegradable and naturally sourced materials. This study aimed to make Pleurotus sajor-caju biocomposites, employing SBS paperboard packages coated with PET as the substrate. The study investigated two inoculum fractions (30% and 50%) and two drying methods (conventional and vacuum) at 60 °C. The biocomposites produced with a 50% inoculum and conventional drying displayed favorable characteristics, including a shorter processing time (16 days), a higher drying rate (5.58 g/day), low porosity (21,7%), compressive strength of 0.16 MPa, apparent density of 315 kg/m3 and satisfactory thermal stability.

 

 

Keywords

biocomposites, fungal mycelium, packaging waste, Pleurotus sajor-caju, sustainable production

References

1 Landim, A. P. M., Bernardo, C. O., Martins, I. B. A., Francisco, M. R., Santos, M. B., & Melo, N. R. (2016). Sustainability concerning food packaging in Brazil. Polímeros: Ciência e Tecnologia, 26, 82-92. http://doi.org/10.1590/0104-1428.1897.

2 Ito, D. (2009). Desenvolvimento de materiais de embalagens para forno de micro-ondas. Boletim de Tecnologia e Desenvolvimento de Embalagens, 21(2), 1-3. Retrieved in 2024, March 28, from https://ital.agricultura.sp.gov.br/arquivos/cetea/informativo/v21n2/v21n2_artigo1.pdf

3 Ferri, G. N. (2015). Utilização do resíduo de papel cartão revestido com PET na remoção biológica de corante rodamina B (Master's thesis). Universidade Regional de Blumenau, Blumenau.

4 Berdugo-Clavijo, C., Scheffer, G., Sen, A., & Gieg, L. M. (2022). Biodegradation of polymers used in oil and gas operations: towards enzyme biotechnology development and field application. Polymers, 14(9), 1871. http://doi.org/10.3390/polym14091871. PMid:35567040.

5 Khalid, M. Y., & Arif, Z. U. (2022). Novel biopolymer-based sustainable composites for food packaging applications: A narrative review. Food Packaging and Shelf Life, 33, 100892. http://doi.org/10.1016/j.fpsl.2022.100892.

6 Xie, Y., Gao, S., Zhang, D., Wang, C., & Chu, F. (2023). Bio-based polymeric materials synthesized from renewable resources: A mini-review. Resources Chemicals and Materials, 2(3), 223-230. http://doi.org/10.1016/j.recm.2023.05.001.

7 Bayer, E., McIntyre, G., & Swersey, B. L. (2008). US 2008 0145577 A1. USA: United States Patent Application. Retrieved in 2024, March 28, from https://patentimages.storage.googleapis.com/74/46/74/6deee8ee51a2f1/US20080145577A1.pdf

8 Ecovative. (2023, March 17). Retrieved in 2024, March 28, from https://ecovative.com

9 Maisnam, D., Rasane, P., Dey, A., Kaur, S., & Sarma, C. (2017). Recent advances in conventional drying of foods. Journal of Food Technology and Preservation, 1, 25-34. Retrieved in 2024, March 28, from https://www.researchgate.net/publication/316507291

10 Shukla, S. (2011). Freeze drying process: A review. International Journal of Pharmaceutical Sciences and Research, 2(12), 3061-3068. http://doi.org/10.13040/IJPSR.0975-8232.2(12).3061-68.

11 Giri, S. K., & Prasad, S. (2006). Modeling shrinkage and density changes during microwave-vacuum drying of button mushroom. International Journal of Food Properties, 9(3), 409-419. http://doi.org/10.1080/10942910600596472.

12 Rahman, M. S., Al-Amri, O. S., & Al-Bulushi, I. M. (2002). Pores and physico-chemical characteristics of dried tuna produced by different methods of drying. Journal of Food Engineering, 53(4), 301-313. http://doi.org/10.1016/S0260-8774(01)00169-8.

13 Yang, Z., Zhang, F., Still, B., White, M., & Amstislavski, P. (2017). Physical and mechanical properties of fungal mycelium-based biofoam. Journal of Materials in Civil Engineering, 29(7), 04017030. http://doi.org/10.1061/(ASCE)MT.1943-5533.0001866.

14 Appels, F. V. W., Camere, S., Montalti, M., Karana, E., Jansen, K. M. B., Dijksterhuis, J., Krijgsheld, P., & Wösten, H. A. B. (2019). Fabrication factors influencing mechanical, moisture- and water-related properties of mycelium-based composites. Materials & Design, 161, 64-71. http://doi.org/10.1016/j.matdes.2018.11.027.

15 Bruscato, C., Malvessi, E., Brandalise, R. N., & Camassola, M. (2019). High performance of macrofungi in the production of mycelium-based biofoams using sawdust: sustainable technology for waste reduction. Journal of Cleaner Production, 234, 225-232. http://doi.org/10.1016/j.jclepro.2019.06.150.

16 Ghazvinian, A., Farrokhsiar, P., Vieira, F., Pecchia, J., & Gursoy, B. (2019). Mycelium-based bio-composites for architecture: assessing the effects of cultivation factors on compressive strength. In J. P. Sousa, G. C. Henriques, & J. P. Xavier (Eds.), Proceedings of the 37th eCAADe and XXIII SIGraDi Joint Conference, “Architecture in the Age of the 4th Industrial Revolution (pp. 505-514). Porto: Blucher. http://doi.org/10.5151/proceedings-ecaadesigradi2019_465.

17 Jones, M., Mautner, A., Luenco, S., Bismarck, A., & John, S. (2020). Engineered mycelium composite construction materials from fungal biorefineries: A critical review. Materials & Design, 187, 108397. http://doi.org/10.1016/j.matdes.2019.108397.

18 Rocha, M. I., Benkendorf, S., Gern, R. M. M., Riani, J. C., & Wisbeck, E. (2020). Desenvolvimento de biocompósitos fúngicos utilizando resíduos industriais. Matéria (Rio de Janeiro), 25(4), e-12840. http://doi.org/10.1590/s1517-707620200004.1140.

19 Aquino, M., Rugolo, M., Robledo, G., & Kuhar, F. (2022). Evaluation of mycelium composite materials produced by five Patagonian fungal species. Maderas. Ciencia y Tecnología, 24(35), 1-14. http://doi.org/10.4067/S0718-221X2022000100435.

20 Kenig-Witkowska, M. (2017). The concept of sustainable development in the European Union policy and law. Journal of Comparative Urban Law and Policy, 1(1), 6. Retrieved in 2024, March 28, from https://readingroom.law.gsu.edu/jculp/vol1/iss1/6

21 Miles, P. G., & Chang, S. T. (2004). Mushrooms: Cultivation, nutritional value, medicinal effect and environmental impact. Boca Raton: CRC Press. http://doi.org/10.1201/9780203492086

22 Faria, P. C., Wisbeck, E., & Dias, L. C. (2015). Biodegradação de polipropileno reciclado (PPR) e de poli(tereftalato de etileno) reciclado (PETR) por Pleurotus ostreatus. Matéria (Rio de Janeiro), 20(2), 452-459. http://doi.org/10.1590/S1517-707620150002.0045.

23 Santos, B. C., Silva, K. C., Bonatti-Chaves, M., & Wisbeck, E. (2021). Produção de cogumelos de Pleurotus sajor-caju em resíduos de embalagens de papel cartão revestido com PET. In Anais do II Congresso Brasileiro Interdisciplinar em Ciência e Tecnologia. Retrieved in 2024, March 28, from https://even3.blob.core.windows.net/anais/389548.pdf

24 Furlan, S. A., Virmond, L. J., Miers, D. A., Bonatti, M., Gern, R. M. M., & Jonas, R. (1997). Mushroom strains able to grow at high temperatures and low pH values. World Journal of Microbiology & Biotechnology, 13(6), 689-692. http://doi.org/10.1023/A:1018579123385.

25 Bonatti, M., Karnopp, P., Soares, H. M., & Furlan, S. A. (2004). Evaluation of Pleurotus ostreatus and Pleurotus sajor-caju nutritional characteristics when cultivated in different lignocellulosic wastes. Food Chemistry, 88(3), 425-428. http://doi.org/10.1016/j.foodchem.2004.01.050.

26 Associação Brasileira de Normas Técnicas (2016). NBR 8082-16: Espuma rígida de poliuretano para fins de isolação térmica — determinação da resistência à compressão. Rio de Janeiro: ABNT. Retrieved in 2024, March 28, from https://normas.com.br/visualizar/abnt-nbr-nm/2855/abnt-nbr8082-espuma-rigida-de-poliuretano-para-fins-de-isolacao-termica-determinacao-da-resistencia-a-compressao

27 Hossen, M. R., Talbot, M. W., Kennard, R., Bousfield, D. W., & Mason, M. D. (2020). A comparative study of methods for porosity determination of cellulose-based porous materials. Cellulose (London, England), 27(12), 6849-6860. http://doi.org/10.1007/s10570-020-03257-9.

28 American Society for Testing and Materials (1999). D570-95: Standard test method for water absorption of plastics. USA: ASTM.

29 Rorabacher, D. B. (1991). Statistical treatment for rejection of deviant values: critical values of Dixon’s “Q” parameter and related subrange ratios at the 95% confidence level. Analytical Chemistry, 63(2), 139-146. http://doi.org/10.1021/ac00002a010.

30 Deschamps, J. L. N. (2020). Produção e caracterização de biocompósitos obtidos do cultivo de Pleurotus sajor-caju em substrato composto por bagaço de malte e folhas de bananeira (Master's thesis). Universidade da Região de Joinville, Joinville.

31 Deacon, J. W. (2006). Fungal biology. UK: Blackwell Publishing Ltd.

32 Reis, F. R., Masson, M. L., & Waszczynskyj, N. (2006). Efeitos da secagem convectiva e a vácuo sobre parâmetros de qualidade de fatias de berinjela. Revista Brasileira de Produtos Agroindustriais, 8(2), 167-173. http://doi.org/10.15871/1517-8595/rbpa.v8n2p163-169.

33 Ma, X., Chang, P. R., Yu, J., & Stumborg, M. (2009). Properties of biodegradable citric acid-modified granular starch/thermoplastic pea starch composites. Carbohydrate Polymers, 75(1), 1-8. http://doi.org/10.1016/j.carbpol.2008.05.020.

34 Klyosov, A. A. (2007). Wood-plastic composites. USA: John Wiley & Sons, Inc.. http://doi.org/10.1002/9780470165935.

35 Sjöqvist, M., Boldizar, A., & Rigdahl, M. (2010). Processing and water absorption behaviour of foamed potato starch. Journal of Cellular Plastics, 46(6), 497-517. http://doi.org/10.1177/0021955X10377802.

36 Girometta, C., Picco, A. M., Baiguera, R. M., Dondi, D., Babbini, S., Cartabia, M., Pellegrini, M., & Savino, E. (2019). Physico-mechanical and thermodynamic properties of mycelium-based biocomposites: A review. Sustainability (Basel), 11(1), 281. http://doi.org/10.3390/su11010281.

37 Sánchez-Vázquez, J. E., & Royse, D. J. (2001). La biología y el cultivo de Pleurotus spp. Mexico: El Colegio de la Frontera Sur.

38 Cha, J. S. (2004). Pest and disease management. In R. Gush & J. Poppe (Eds.), Mushroom grower’s handbook – Oyster mushroom cultivation (pp. 172-186). Seoul: Mushword-Heineart Inc.

39 Ziegler, A. R., Bajwa, S. G., Holt, G. A., McIntyre, G., & Bajwa, D. S. (2016). Evaluation of physico-mechanical properties of mycelium reinforced green biocomposites made from cellulosic fibers. Applied Engineering in Agriculture, 32(6), 931-938. http://doi.org/10.13031/aea.32.11830.

40 Dai, C., Yu, C., & Zhou, X. (2007). Heat and mass transfer in wood composite panels during hot pressing. Part II. Modeling void formation and mat permeability. Wood and Fiber Science, 37(2), 242-257. Retrieved in 2024, March 28, from https://wfs.swst.org/index.php/wfs/article/view/412

41 Associação Brasileira de Normas Técnicas (2016). NBR 11752-16: Materiais celulares de poliestireno para isolamento térmico na construção civil e refrigeração industrial – Especificação. Rio de Janeiro: ABNT. Retrieved in 2024, March 28, from https://www.normas.com.br/visualizar/abnt-nbr-nm/787/nbr11752-materiais-celulares-de-poliestireno-para-isolamento-termico-na-construcao-civil-e-refrigeracao-industrial-especificacao

42 Thibault, B., Aghajanzadeh, S., Sultana, A., Ratti, C., & Khalloufi, S. (2024). Characteristics of open and closed pores, their measurement techniques and exploitation in dehydrated food products. Food Engineering Reviews, 16(3), 323-355. http://doi.org/10.1007/s12393-024-09376-4.

43 Lelivelt, R. J. J. (2015). The mechanical possibilities of mycelium materials (Master's thesis). Eindhoven University of Technology, Eindhoven, Netherlands. Retrieved in 2024, March 28, from https://research.tue.nl/en/studentTheses/the-mechanical-possibilities-of-mycelium-materials

44 López-Nava, J. A., González, J. M., Chacón, X. R., & Luna, J. A. N. (2016). Assessment of edible fungi and films bio-based material simulating expanded polystyrene. Materials and Manufacturing Processes, 31(8), 1085-1090. http://doi.org/10.1080/10426914.2015.1070420.

45 Mano, J. F., Koniarova, D., & Reis, R. L. (2003). Thermal properties of thermoplastic starch/synthetic polymer blends with potential biomedical applicability. Journal of Materials Science. Materials in Medicine, 14(2), 127-135. http://doi.org/10.1023/A:1022015712170. PMid:15348484.

46 Sánchez, R., Espinosa, E., Domínguez-Robles, J., Loaiza, J. M., & Rodríguez, A. (2016). Isolation and characterization of lignocellulose nanofibers from different wheat straw pulps. International Journal of Biological Macromolecules, 92, 1025-1033. http://doi.org/10.1016/j.ijbiomac.2016.08.019. PMid:27514440.

47 Alemdar, A., & Sain, M. (2008). Biocomposites from wheat straw nanofibers: Morphology, thermal and mechanical properties. Composites Science and Technology, 68(2), 557-565. http://doi.org/10.1016/j.compscitech.2007.05.044.

48 Smith, B. C. (2022). Infrared spectroscopy of polymers, VIII: polyesters and the rule of three. Spectroscopy (Springfield, Or.), 37(10), 25-28. http://doi.org/10.56530/spectroscopy.ta9383e3.
 

6825e860a953952d9e0cb762 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections