Polímeros: Ciência e Tecnologia
https://www.revistapolimeros.org.br/article/doi/10.1590/0104-1428.20240027
Polímeros: Ciência e Tecnologia
Original Article

Application of natural rubber latex foam as an effective oil absorbent

Abdulhakim Masa; Nureeyah Jehsoh; Nabil Hayeemasae

Downloads: 0
Views: 33

Abstract

Oil spills have had catastrophic effects on marine ecosystems. The removal of oil spills from the water surface has then attracted worldwide attention. Natural rubber (NR) is a well-known example of a hydrophobic material, due to its hydrocarbon structure. For this purpose, the potential of NR as an oil absorbent is demonstrated. NR was formed into a cellular structure where oil absorbency can be controlled by their densities. It can be done by varying the foaming volume from 2-8 fold (2×, 4×, 6×, and 8×) the original volume of the beater. Increasing the foaming volume has reduced the densities. Over the variations of densities, the oil absorbencies were 10.58 to 16.76 g/g for crude oil, and 6.56 to 13.18 g/g for diesel oil. This indicated that the absorbent based on NR latex foam provided excellent performance and could be practically used as an oil-absorbent material.

 

 

Keywords

natural rubber latex foam, oil absorbency, foam, environment

References

1 Liu, Y., Ma, J., Wu, T., Wang, X., Huang, G., Liu, Y., Qiu, H., Li, Y., Wang, W., & Gao, J. (2013). Cost-effective reduced graphene oxide-coated polyurethane sponge as a highly efficient and reusable oil-absorbent. ACS Applied Materials & Interfaces, 5(20), 10018-10026. http://doi.org/10.1021/am4024252. PMid:24050505.

2 Wang, J., Zheng, Y., & Wang, A. (2012). Superhydrophobic kapok fiber oil-absorbent: preparation and high oil absorbency. Chemical Engineering Journal, 213, 1-7. http://doi.org/10.1016/j.cej.2012.09.116.

3 Prendergast, D. P., & Gschwend, P. M. (2014). Assessing the performance and cost of oil spill remediation technologies. Journal of Cleaner Production, 78(1), 233-242. http://doi.org/10.1016/j.jclepro.2014.04.054.

4 Pham, V. H., & Dickerson, J. H. (2014). Superhydrophobic silanized melamine sponges as high efficiency oil absorbent materials. ACS Applied Materials & Interfaces, 6(16), 14181-14188. http://doi.org/10.1021/am503503m. PMid:25039789.

5 Zhang, T., Li, Z., Lü, Y., Liu, Y., Yang, D., Li, Q., & Qiu, F. (2019). Recent progress and future prospects of oil-absorbing materials. Chinese Journal of Chemical Engineering, 27(6), 1282-1295. http://doi.org/10.1016/j.cjche.2018.09.001.

6 Chin, C. C., Musbah, N. D. L., Abdullah, I., & Lazim, A. M. (2018). Characterization and evaluation of prudent liquid natural rubber-based foam for oil spill control application. Arabian Journal for Science and Engineering, 43(11), 6097-6108. http://doi.org/10.1007/s13369-018-3256-5.

7 Jadhav, A. C., & Jadhav, N. C. (2021). Graft copolymerization of methyl methacrylate on Meizotropis Pellita fibres and their applications in oil absorbency. Iranian Polymer Journal, 30(1), 9-24. http://doi.org/10.1007/s13726-020-00869-7.

8 Ramasamy, S., Ismail, H., & Munusamy, Y. (2013). Soil burial, tensile properties, morphology, and biodegradability of (rice husk powder)-filled natural rubber latex foam. Journal of Vinyl and Additive Technology, 21(2), 128-133. http://doi.org/10.1002/vnl.21389.

9 Panploo, K., Chalermsinsuwan, B., & Poompradub, S. (2019). Natural rubber latex foam with particulate fillers for carbon dioxide adsorption and regeneration. RSC Advances, 9(50), 28916-28923. http://doi.org/10.1039/C9RA06000F. PMid:35528441.

10 Baru, F., Saiwari, S., & Hayeemasae, N. (2022). Classification of natural rubber foam grades by optimising the azodicarbonamide content. Polímeros, 32(2), e2022014. http://doi.org/10.1590/0104-1428.20210111.

11 Harpell, G. A., Gallagher, R. B., & Novits, M. F. (1977). Use of azo foaming agents to produce reinforced elastomeric foams. Rubber Chemistry and Technology, 50(4), 678-687. http://doi.org/10.5254/1.3535165.

12 Hoang, A. T., Le, V. V., Al-Tawaha, A. R. M. S., Nguyen, D. N., Al-Tawaha, A. R. M. S., Noor, M. M., & Pham, V. V. (2018). An absorption capacity investigation of new absorbent based on polyurethane foams and rice straw for oil spill cleanup. Petroleum Science and Technology, 36(5), 361-370. http://doi.org/10.1080/10916466.2018.1425722.

13 Zaro, M., Silvestre, W. P., Fedrigo, J. G., Zeni, M., & Baldasso, C. (2021). Sorption of oils by a commercial non-woven polypropylene sorbent. Research Social Development, 10(14), e554101422671. http://doi.org/10.33448/rsd-v10i14.22671.

14 Zimmermann, M. V. G., Junca, E., Almeida, M. K., Ponsoni, L. V., Zattera, A. J., Mari, T., & Santana, R. M. C. (2023). Hydrophobic polyurethane foams reinforced with microcrystalline cellulose for oil spill clean up. Polímeros, 33(4), e20230040. http://doi.org/10.1590/0104-1428.20230054.

15 Cheng, H., Gu, B., Pennefather, M. P., Nguyen, T. X., Phan-Thien, N., & Duong, H. M. (2017). Cotton aerogels and cotton-cellulose aerogels from environmental waste for oil spillage cleanup. Materials & Design, 130, 452-458. http://doi.org/10.1016/j.matdes.2017.05.082.

16 Shiu, R.-F., Lee, C.-L., Hsieh, P.-Y., Chen, C.-S., Kang, Y.-Y., Chin, W.-C., & Tai, N.-H. (2018). Superhydrophobic graphene-based sponge as a novel sorbent for crude oil removal under various environmental conditions. Chemosphere, 207, 110-117. http://doi.org/10.1016/j.chemosphere.2018.05.071. PMid:29793022.

17 Hoang, A. T., Nižetić, S., Duong, X. Q., Rowinski, L., & Nguyen, X. P. (2021). Advanced super-hydrophobic polymer-based porous absorbents for the treatment of oil-polluted water. Chemosphere, 277, 130274. http://doi.org/10.1016/j.chemosphere.2021.130274. PMid:33770690.

18 Suethao, S., Phongphanphanee, S., Wong-ekkabut, J., & Smitthipong, W. (2021). The relationship between the morphology and elasticity of natural rubber foam based on the concentration of the chemical blowing agent. Polymers, 13(7), 1091. http://doi.org/10.3390/polym13071091. PMid:33808133.

19 Ratcha, A., Yoosuk, B., & Kongparakul, S. (2013). Grafted methyl methacrylate and butyl methacrylate onto natural rubber foam for oil sorbent. Advanced Materials Research, 844, 385-390. http://doi.org/10.4028/www.scientific.net/AMR.844.385.

20 Lee, H.-K., Chung, T.-K., Kim, S.-C., Kim, H.-G., Choi, K.-M., Kim, Y.-M., & Han, D.-H. (2008). Influence of the type of curing agent on swelling behaviour of natural rubber foam. Journal of the Korea Academia-Industrial Cooperation Society, 9(6), 1775-1781. http://doi.org/10.5762/KAIS.2008.9.6.1775.

21 Mullins, O. C., Betancourt, S. S., Cribbs, M. E., Dubost, F. X., Creek, J. L., Andrews, A. B., & Venkataramanan, L. (2007). The colloidal structure of crude oil and the structure of oil reservoirs. Energy & Fuels, 21(5), 2785-2794. http://doi.org/10.1021/ef0700883.

22 Edward, O. B., Wade, T. L., Radović, J. R., Meyer, B. M., Miles, M. S., & Larter, S. R. (2016). Chemical composition of macondo and other crude oils and compositional alterations during oil spills. Oceanography (Washington, D.C.), 29(3), 50-63. http://doi.org/10.5670/oceanog.2016.62.

23 Guo, Y., Ristovski, Z., Graham, E., Stevanovic, S., Verma, P., Jafari, M., Miljevic, B., & Brown, R. (2020). The correlation between diesel soot chemical structure and reactivity. Carbon, 161, 736-749. http://doi.org/10.1016/j.carbon.2020.01.061.

24 Wang, X., Wang, Y., Bai, Y., Wang, P., & Zhao, Y. (2019). An overview of physical and chemical features of diesel exhaust particles. Journal of the Energy Institute, 92(6), 1864-1888. http://doi.org/10.1016/j.joei.2018.11.006.
 

6825e7daa953952cf3524655 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections