Application of natural rubber latex foam as an effective oil absorbent
Abdulhakim Masa; Nureeyah Jehsoh; Nabil Hayeemasae
Abstract
Keywords
References
1 Liu, Y., Ma, J., Wu, T., Wang, X., Huang, G., Liu, Y., Qiu, H., Li, Y., Wang, W., & Gao, J. (2013). Cost-effective reduced graphene oxide-coated polyurethane sponge as a highly efficient and reusable oil-absorbent.
2 Wang, J., Zheng, Y., & Wang, A. (2012). Superhydrophobic kapok fiber oil-absorbent: preparation and high oil absorbency.
3 Prendergast, D. P., & Gschwend, P. M. (2014). Assessing the performance and cost of oil spill remediation technologies.
4 Pham, V. H., & Dickerson, J. H. (2014). Superhydrophobic silanized melamine sponges as high efficiency oil absorbent materials.
5 Zhang, T., Li, Z., Lü, Y., Liu, Y., Yang, D., Li, Q., & Qiu, F. (2019). Recent progress and future prospects of oil-absorbing materials.
6 Chin, C. C., Musbah, N. D. L., Abdullah, I., & Lazim, A. M. (2018). Characterization and evaluation of prudent liquid natural rubber-based foam for oil spill control application.
7 Jadhav, A. C., & Jadhav, N. C. (2021). Graft copolymerization of methyl methacrylate on Meizotropis Pellita fibres and their applications in oil absorbency.
8 Ramasamy, S., Ismail, H., & Munusamy, Y. (2013). Soil burial, tensile properties, morphology, and biodegradability of (rice husk powder)-filled natural rubber latex foam.
9 Panploo, K., Chalermsinsuwan, B., & Poompradub, S. (2019). Natural rubber latex foam with particulate fillers for carbon dioxide adsorption and regeneration.
10 Baru, F., Saiwari, S., & Hayeemasae, N. (2022). Classification of natural rubber foam grades by optimising the azodicarbonamide content.
11 Harpell, G. A., Gallagher, R. B., & Novits, M. F. (1977). Use of azo foaming agents to produce reinforced elastomeric foams.
12 Hoang, A. T., Le, V. V., Al-Tawaha, A. R. M. S., Nguyen, D. N., Al-Tawaha, A. R. M. S., Noor, M. M., & Pham, V. V. (2018). An absorption capacity investigation of new absorbent based on polyurethane foams and rice straw for oil spill cleanup.
13 Zaro, M., Silvestre, W. P., Fedrigo, J. G., Zeni, M., & Baldasso, C. (2021). Sorption of oils by a commercial non-woven polypropylene sorbent.
14 Zimmermann, M. V. G., Junca, E., Almeida, M. K., Ponsoni, L. V., Zattera, A. J., Mari, T., & Santana, R. M. C. (2023). Hydrophobic polyurethane foams reinforced with microcrystalline cellulose for oil spill clean up.
15 Cheng, H., Gu, B., Pennefather, M. P., Nguyen, T. X., Phan-Thien, N., & Duong, H. M. (2017). Cotton aerogels and cotton-cellulose aerogels from environmental waste for oil spillage cleanup.
16 Shiu, R.-F., Lee, C.-L., Hsieh, P.-Y., Chen, C.-S., Kang, Y.-Y., Chin, W.-C., & Tai, N.-H. (2018). Superhydrophobic graphene-based sponge as a novel sorbent for crude oil removal under various environmental conditions.
17 Hoang, A. T., Nižetić, S., Duong, X. Q., Rowinski, L., & Nguyen, X. P. (2021). Advanced super-hydrophobic polymer-based porous absorbents for the treatment of oil-polluted water.
18 Suethao, S., Phongphanphanee, S., Wong-ekkabut, J., & Smitthipong, W. (2021). The relationship between the morphology and elasticity of natural rubber foam based on the concentration of the chemical blowing agent.
19 Ratcha, A., Yoosuk, B., & Kongparakul, S. (2013). Grafted methyl methacrylate and butyl methacrylate onto natural rubber foam for oil sorbent.
20 Lee, H.-K., Chung, T.-K., Kim, S.-C., Kim, H.-G., Choi, K.-M., Kim, Y.-M., & Han, D.-H. (2008). Influence of the type of curing agent on swelling behaviour of natural rubber foam.
21 Mullins, O. C., Betancourt, S. S., Cribbs, M. E., Dubost, F. X., Creek, J. L., Andrews, A. B., & Venkataramanan, L. (2007). The colloidal structure of crude oil and the structure of oil reservoirs.
22 Edward, O. B., Wade, T. L., Radović, J. R., Meyer, B. M., Miles, M. S., & Larter, S. R. (2016). Chemical composition of macondo and other crude oils and compositional alterations during oil spills.
23 Guo, Y., Ristovski, Z., Graham, E., Stevanovic, S., Verma, P., Jafari, M., Miljevic, B., & Brown, R. (2020). The correlation between diesel soot chemical structure and reactivity.
24 Wang, X., Wang, Y., Bai, Y., Wang, P., & Zhao, Y. (2019). An overview of physical and chemical features of diesel exhaust particles.