Polímeros: Ciência e Tecnologia
https://www.revistapolimeros.org.br/article/doi/10.1590/0104-1428.20220042
Polímeros: Ciência e Tecnologia
Review Article

Recent advances in the use of Polyamide-based materials for the automotive industry

Marcel Yuzo Kondo; Larissa Stieven Montagna; Guilherme Ferreira de Melo Morgado; André Luiz Guimarães de Castilho; Larissa Anne Pereira dos Santos Batista; Edson Cocchieri Botelho; Michelle Leali Costa; Fabio Roberto Passador; Mirabel Cerqueira Rezende; Marcos Valério Ribeiro

Downloads: 0
Views: 514

Abstract

Polyamide (PA) is a well-known and researched thermoplastic due to its excellent mechanical and physical properties, making it developed in the automotive sector, suitable for lighter vehicles, and, consequently, lower fuel consumption. This review manuscript presents the applications of PA-based materials in the manufacture of vehicle parts, with a description of their processing, a discussion about their thermal properties and the crystallization of polymer structure, the challenges of machining PA-based composite materials, and the feasibility of recyclability. This work aims to revise literature about the use of polyamide 6 (PA6), polyamide 66 (PA66), and polyamide 12 (PA12) and their composites reinforced with fiberglass (FG) and carbon fiber (CF) focused on the potential that these materials have as alternative materials for the automotive industry.

 

 

Keywords

automotive industry, carbon fiber, composites, polyamide

References

1 Venoor, V., Park, J. H., Kazmer, D. O., & Sobkowicz, M. J. (2021). Understanding the effect of water in polyamides: a review. Polymer Reviews (Philadelphia, Pa.), 61(3), 598-645. http://dx.doi.org/10.1080/15583724.2020.1855196.

2 Deshoulles, Q., Le Gall, M., Dreanno, C., Arhant, M., Priour, D., & Le Gac, P. Y. (2021). Modelling pure polyamide 6 hydrolysis: influence of water content in the amorphous phase. Polymer Degradation & Stability, 183, 109435. http://dx.doi.org/10.1016/j.polymdegradstab.2020.109435.

3 Troughton, M. J. (2009). Polyamides. In M. J. Troughton (Ed.), Handbook of plastics joining: a practical guide (pp. 251-281). USA: William Andrew Inc. http://dx.doi.org/10.1016/B978-0-8155-1581-4.50027-5

4 McKeen, L. W. (2019). Polyamides (nylons). In L. W. McKeen. The effect of UV light and weather on plastics and elastomers (Chap. 7, pp. 185-222). USA: William Andrew Inc. http://dx.doi.org/10.1016/B978-0-12-816457-0.00007-1.

5 Silva, T. F., Melo Morgado, G. F., Amaral Montanheiro, T. L., Montagna, L. S., Albers, A. P. F., & Passador, F. R. (2020). A simple mixing method for polyamide 12/attapulgite nanocomposites: structural and mechanical characterization. SN Applied Sciences, 2(3), 369. http://dx.doi.org/10.1007/s42452-020-2153-1.

6 Kiziltas, A., Liu, W., Tamrakar, S., & Mielewski, D. (2021). Graphene nanoplatelet reinforcement for thermal and mechanical properties enhancement of bio-based polyamide 6, 10 nanocomposites for automotive applications. Composites Part C: Open Access, 6, 100177. http://dx.doi.org/10.1016/j.jcomc.2021.100177.

7 Kurokawa, M., Uchiyama, Y., Iwai, T., & Nagai, S. (2003). Performance of plastic gear made of carbon fiber reinforced polyamide 12. Wear, 254(5–6), 468-473. http://dx.doi.org/10.1016/S0043-1648(03)00020-6.

8 Obeid, H., Clément, A., Fréour, S., Jacquemin, F., & Casari, P. (2018). On the identification of the coefficient of moisture expansion of polyamide-6: accounting differential swelling strains and plasticization. Mechanics of Materials, 118, 1-10. http://dx.doi.org/10.1016/j.mechmat.2017.12.002.

9 Wiese, M., Thiede, S., & Herrmann, C. (2020). Rapid manufacturing of automotive polymer series parts: A systematic review of processes, materials and challenges. Additive Manufacturing, 36, 101582. http://dx.doi.org/10.1016/j.addma.2020.101582.

10 Stan, D. V. (2020). Considerations on the drying of the raw material and consequences on the quality of the injected products. Materiale Plastice, 57(1), 46-56. http://dx.doi.org/10.37358/MP.20.1.5311.

11 Karataş, M. A., & Gökkaya, H. (2018). A review on machinability of carbon fiber reinforced polymer (CFRP) and glass fiber reinforced polymer (GFRP) composite materials. Defence Technology, 14(4), 318-326. http://dx.doi.org/10.1016/j.dt.2018.02.001.

12 Caggiano, A., Improta, I., & Nele, L. (2018). Characterization of a new dry drill-milling process of carbon fibre reinforced polymer laminates. Materials (Basel), 11(8), 1470. http://dx.doi.org/10.3390/ma11081470. PMid:30126200.

13 Gaugel, S., Sripathy, P., Haeger, A., Meinhard, D., Bernthaler, T., Lissek, F., Kaufeld, M., Knoblauch, V., & Schneider, G. (2016). A comparative study on tool wear and laminate damage in drilling of carbon-fiber reinforced polymers (CFRP). Composite Structures, 155, 173-183. http://dx.doi.org/10.1016/j.compstruct.2016.08.004.

14 Meinhard, D., Haeger, A., & Knoblauch, V. (2021). Drilling induced defects on carbon fiber-reinforced thermoplastic polyamide and their effect on mechanical properties. Composite Structures, 256, 113138. http://dx.doi.org/10.1016/j.compstruct.2020.113138.

15 Bertolini, R., Ghiotti, A., & Bruschi, S. (2020). Machinability Of Polyamide 6 Under Cryogenic Cooling Conditions. Procedia Manufacturing, 48, 419-427. http://dx.doi.org/10.1016/j.promfg.2020.05.064.

16 Kuram, E. (2016). Micro-machinability of injection molded polyamide 6 polymer and glass-fiber reinforced polyamide 6 composite. Composites. Part B, Engineering, 88, 85-100. http://dx.doi.org/10.1016/j.compositesb.2015.11.004.

17 Ramezani-Dana, H., Gomina, M., Bréard, J., & Orange, G. (2021). Experimental investigation of the mechanical behavior of glass fiber/high fluidity polyamide-based composites for automotive market. Journal of Reinforced Plastics and Composites, 40(21-22), 827-844. http://dx.doi.org/10.1177/07316844211014006.

18 European Commission. Regulation (EU) 2019/631 of the European Parliament and of the Council of 17 April 2019. (2019). Setting CO2 emission performance standards for new passenger cars and for new light commercial vehicles and repealing Regulations (EC) No 443/2009 and (EU) No 510/2011. Official Journal of the European Union, France. Retrieved in 2022, May 17, from https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32019R0631&qid=1638814026735

19 Nguyen-Tran, H.-D., Hoang, V.-T., Do, V.-T., Chun, D.-M., & Yum, Y.-J. (2018). Effect of multiwalled carbon nanotubes on the mechanical properties of carbon fiber-reinforced polyamide-6/polypropylene composites for lightweight automotive parts. Materials (Basel), 11(3), 429. http://dx.doi.org/10.3390/ma11030429. PMid:29543754.

20 Grätzl, T., van Dijk, Y., Schramm, N., & Kroll, L. (2019). Influence of the automotive paint shop on mechanical properties of continuous fibre-reinforced thermoplastics. Composite Structures, 208, 557-565. http://dx.doi.org/10.1016/j.compstruct.2018.10.052.

21 European Parliament. Directive 2000/53/EC of The European Parliament and of The Council. (2000, 18 de setembro). On end-of life vehicles. Official Journal of the European Union, France. Retrieved in 2022, May 17, from https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=celex%3A32000L0053

22 Amasawa, E., Hasegawa, M., Yokokawa, N., Sugiyama, H., & Hirao, M. (2020). Environmental performance of an electric vehicle composed of 47% polymers and polymer composites. Sustainable Materials and Technologies, 25, e00189. http://dx.doi.org/10.1016/j.susmat.2020.e00189.

23 Chauhan, V., Kärki, T., & Varis, J. (2019). Review of natural fiber-reinforced engineering plastic composites, their applications in the transportation sector and processing techniques. Journal of Thermoplastic Composite Materials, 35(8), 1169-1209. http://dx.doi.org/10.1177/0892705719889095.

24 Boopathy, G., Prakash, J. U., Gurusami, K., & Kumar, J. V. S. P. (2022). Investigation on process parameters for injection moulding of nylon 6/SiC and nylon 6/B4C composites. Materials Today: Proceedings, 52(Pt 3), 1676-1681. http://dx.doi.org/10.1016/j.matpr.2021.11.316.

25 Muminovic, A. J., Pervan, N., Delic, M., Muratovic, E., Mesic, E., & Braut, S. (2022). Failure analysis of nylon gears made by additive manufacturing. Engineering Failure Analysis, 137, 106272. http://dx.doi.org/10.1016/j.engfailanal.2022.106272.

26 Dhaduti, S. C., Sarganachari, S. G., Patil, A. Y., & Yunus Khan, T. M. (2020). Prediction of injection molding parameters for symmetric spur gear. Journal of Molecular Modeling, 26(11), 302. http://dx.doi.org/10.1007/s00894-020-04560-9. PMid:33057961.

27 Zhang, Y., Mao, K., Leigh, S., Shah, A., Chao, Z., & Ma, G. (2020). A parametric study of 3D printed polymer gears. International Journal of Advanced Manufacturing Technology, 107(11), 4481-4492. http://dx.doi.org/10.1007/s00170-020-05270-5.

28 SriMurugan, R., Ramnath, B. V., Ramanan, N., & Elanchezhian, C. (2019). Study on mechanical and metallurgical properties of glass fibre reinforced PMC gear materials. Materials Today: Proceedings, 16(Pt 2), 524-531. http://dx.doi.org/10.1016/j.matpr.2019.05.124.

29 Karthikeyan, R., Rajkumar, S., Bensingh, R. J., Kader, M. A., & Nayak, S. K. (2020). Finite element analysis of elastomer used in automotive suspension systems. Journal of Elastomers and Plastics, 52(6), 521-536. http://dx.doi.org/10.1177/0095244319875774.

30 Singh, R., Kumar, R., Ranjan, N., Penna, R., & Fraternali, F. (2018). On the recyclability of polyamide for sustainable composite structures in civil engineering. Composite Structures, 184, 704-713. http://dx.doi.org/10.1016/j.compstruct.2017.10.036.

31 Chen, P., Wu, H., Zhu, W., Yang, L., Li, Z., Yan, C., Wen, S., & Shi, Y. (2018). Investigation into the processability, recyclability and crystalline structure of selective laser sintered Polyamide 6 in comparison with Polyamide 12. Polymer Testing, 69, 366-374. http://dx.doi.org/10.1016/j.polymertesting.2018.05.045.

32 Spronk, S. W. F., Kersemans, M., De Baerdemaeker, J. C. A., Gilabert, F. A., Sevenois, R. D. B., Garoz, D., Kassapoglou, C., & Van Paepegem, W. (2017). Comparing damage from low-velocity impact and quasi-static indentation in automotive carbon/epoxy and glass/polyamide-6 laminates. Polymer Testing, 65, 231-241. http://dx.doi.org/10.1016/j.polymertesting.2017.11.023.

33 Murray, J. J., Allen, T., Bickerton, S., Bajpai, A., Gleich, K., McCarthy, E. D., & Brádaigh, C. M. Ó. (2021). Thermoplastic RTM: impact properties of anionically polymerised polyamide 6 composites for structural automotive parts. Energies, 14(18), 5790. http://dx.doi.org/10.3390/en14185790.

34 Ishikawa, T., Amaoka, K., Masubuchi, Y., Yamamoto, T., Yamanaka, A., Arai, M., & Takahashi, J. (2018). Overview of automotive structural composites technology developments in Japan. Composites Science and Technology, 155, 221-246. http://dx.doi.org/10.1016/j.compscitech.2017.09.015.

35 Caltagirone, P. E., Ginder, R. S., Ozcan, S., Li, K., Gay, A. M., Stonecash, J., Steirer, K. X., Cousins, D., Kline, S. P., Maxey, A. T., & Stebner, A. P. (2021). Substitution of virgin carbon fiber with low-cost recycled fiber in automotive grade injection molding polyamide 66 for equivalent composite mechanical performance with improved sustainability. Composites. Part B, Engineering, 221, 109007. http://dx.doi.org/10.1016/j.compositesb.2021.109007.

36 Caputo, F., Lamanna, G., De Luca, A., & Armentani, E. (2020). Thermo-mechanical investigation on an automotive engine encapsulation system made of fiberglass reinforced polyamide PA6 GF30 material. Macromolecular Symposia, 389(1), 1900100. http://dx.doi.org/10.1002/masy.201900100.

37 Volpe, V., Lanzillo, S., Affinita, G., Villacci, B., Macchiarolo, I., & Pantani, R. (2019). Lightweight high-performance polymer composite for automotive applications. Polymers, 11(2), 326. http://dx.doi.org/10.3390/polym11020326. PMid:30960310.

38 Mosey, S., Korkees, F., Rees, A., & Llewelyn, G. (2020). Investigation into fibre orientation and weldline reduction of injection moulded short glass-fibre/polyamide 6-6 automotive components. Journal of Thermoplastic Composite Materials, 33(12), 1603-1628. http://dx.doi.org/10.1177/0892705719833098.

39 Wei, X.-F., Kallio, K. J., Bruder, S., Bellander, M., Olsson, R. T., & Hedenqvist, M. S. (2020). High-performance glass-fibre reinforced biobased aromatic polyamide in automotive biofuel supply systems. Journal of Cleaner Production, 263, 121453. http://dx.doi.org/10.1016/j.jclepro.2020.121453.

40 Hıdıroğlu, M., Aksüt, D., Serçe, O., Karabulut, H., & Şen, M. (2019). Reducing the hydrocarbon gas diffusion and increasing the pressure-impact strength of fuel transfer pipelines for use in the automotive industry using radiation crosslinked polyamide 12. Radiation Physics and Chemistry, 159, 118-123. http://dx.doi.org/10.1016/j.radphyschem.2019.02.039.

41 Özbay, B., & Serhatlı, E. (2020). Processing and characterization of hollow glass-filled polyamide 12 composites by selective laser sintering method. Materials Technology, 37(4), 213-223. http://dx.doi.org/10.1080/10667857.2020.1824149.

42 Santonocito, D. (2020). Evaluation of fatigue properties of 3D-printed Polyamide-12 by means of energy approach during tensile tests. Procedia Structural Integrity, 25, 355-363. http://dx.doi.org/10.1016/j.prostr.2020.04.040.

43 Shinzawa, H., & Mizukado, J. (2020). Water absorption by polyamide (PA) 6 studied with two-trace two-dimensional (2T2D) near-infrared (NIR) correlation spectroscopy. Journal of Molecular Structure, 1217, 128389. http://dx.doi.org/10.1016/j.molstruc.2020.128389.

44 Teixeira, D., Giovanela, M., Gonella, L. B., & Crespo, J. S. (2013). Influence of flow restriction on the microstructure and mechanical properties of long glass fiber-reinforced polyamide 6.6 composites for automotive applications. Materials & Design, 47, 287-294. http://dx.doi.org/10.1016/j.matdes.2012.12.030.

45 Marset, D., Dolza, C., Boronat, T., Montanes, N., Balart, R., Sanchez-Nacher, L., & Quiles-Carrillo, L. (2020). Injection-Molded parts of partially biobased polyamide 610 and biobased halloysite nanotubes. Polymers, 12(7), 1503. http://dx.doi.org/10.3390/polym12071503. PMid:32640632.

46 Abdelwahab, M., Codou, A., Anstey, A., Mohanty, A. K., & Misra, M. (2020). Studies on the dimensional stability and mechanical properties of nanobiocomposites from polyamide 6-filled with biocarbon and nanoclay hybrid systems. Composites. Part A, Applied Science and Manufacturing, 129, 105695. http://dx.doi.org/10.1016/j.compositesa.2019.105695.

47 Venkatraman, P., Trotto, E., Burgoyne, I., & Foster, E. J. (2020). Premixed cellulose nanocrystal reinforcement of polyamide 6 for melt processing. Polymer Composites, 41(10), 4353-4361. http://dx.doi.org/10.1002/pc.25717.

48 Sabiston, T., Li, B., Kang, J., Wilkinson, D., & Engler-Pinto, C. (2021). Accounting for the microstructure in the prediction of the fatigue life of injection moulded composites for automotive applications. Composite Structures, 255, 112898. http://dx.doi.org/10.1016/j.compstruct.2020.112898.

49 Kawai, M., Funaki, S., Taketa, I., & Hirano, N. (2019). Temperature-dependent constant fatigue life diagram for press-formed short carbon fiber reinforced polyamide composite. Advanced Composite Materials, 28(suppl 2), 1-28. http://dx.doi.org/10.1080/09243046.2018.1434915.

50 Ozmen, S. C., Ozkoc, G., & Serhatli, E. (2019). Thermal, mechanical and physical properties of chain extended recycled polyamide 6 via reactive extrusion: effect of chain extender types. Polymer Degradation & Stability, 162, 76-84. http://dx.doi.org/10.1016/j.polymdegradstab.2019.01.026.

51 Ogunsona, E. O., Codou, A., Misra, M., & Mohanty, A. K. (2019). A critical review on the fabrication processes and performance of polyamide biocomposites from a biofiller perspective. Materials Today Sustainability, 5, 100014. http://dx.doi.org/10.1016/j.mtsust.2019.100014.

52 Borrelli, A., D’Errico, G., Borrelli, C., & Citarella, R. (2020). Assessment of crash performance of an automotive component made through additive manufacturing. Applied Sciences (Basel, Switzerland), 10(24), 9106. http://dx.doi.org/10.3390/app10249106.

53 Lupone, F., Padovano, E., Veca, A., Franceschetti, L., & Badini, C. (2020). Innovative processing route combining fused deposition modelling and laser writing for the manufacturing of multifunctional polyamide/carbon fiber composites. Materials & Design, 193, 108869. http://dx.doi.org/10.1016/j.matdes.2020.108869.

54 Batista, N. L., Olivier, P., Bernhart, G., Rezende, M. C., & Botelho, E. C. (2016). Correlation between degree of crystallinity, morphology and mechanical properties of PPS/carbon fiber laminates. Materials Research, 19(1), 195-201. http://dx.doi.org/10.1590/1980-5373-MR-2015-0453.

55 Liu, B., Hu, G., Zhang, J., & Wang, Z. (2019). The non-isothermal crystallization behavior of polyamide 6 and polyamide 6/HDPE/MAH/L-101 composites. Journal of Polymer Engineering, 39(2), 124-133. http://dx.doi.org/10.1515/polyeng-2018-0170.

56 Liu, T., Mo, Z., Wang, S., & Zhang, H. (1997). Isothermal melt and cold crystallization kinetics of poly(aryl ether ether ketone ketone) (PEEKK). Polymer Engineering and Science, 33(9), 1405-1414. http://dx.doi.org/10.1016/S0014-3057(97)00016-5.

57 Zaldua, N., Maiz, J., de la Calle, A., García-Arrieta, S., Elizetxea, C., Harismendy, I., Tercjak, A., & Müller, A. J. (2019). Nucleation and crystallization of PA6 composites prepared by T-RTM: effects of carbon and glass fiber loading. Polymers, 11(10), 1680. http://dx.doi.org/10.3390/polym11101680. PMid:31615165.

58 Taketa, I., Kalinka, G., Gorbatikh, L., Lomov, S. V., & Verpoest, I. (2020). Influence of cooling rate on the properties of carbon fiber unidirectional composites with polypropylene, polyamide 6, and polyphenylene sulfide matrices. Advanced Composite Materials, 29(1), 101-113. http://dx.doi.org/10.1080/09243046.2019.1651083.

59 Li, M.-X., Lee, D., Lee, G. H., Kim, S. M., Ben, G., Lee, W. I., & Choi, S. W. (2020). Effect of temperature on the mechanical properties and polymerization kinetics of polyamide-6 composites. Polymers, 12(5), 1133. http://dx.doi.org/10.3390/polym12051133. PMid:32429100.

60 Yaghini, N., & Peters, G. W. M. (2021). Modeling Crystallization Kinetics and Resulting Properties of Polyamide 6. Macromolecules, 54(4), 1894-1904. http://dx.doi.org/10.1021/acs.macromol.0c02588.

61 Uematsu, H., Kawasaki, T., Koizumi, K., Yamaguchi, A., Sugihara, S., Yamane, M., Kawabe, K., Ozaki, Y., & Tanoue, S. (2021). Relationship between crystalline structure of polyamide 6 within carbon fibers and their mechanical properties studied using Micro-Raman spectroscopy. Polymer, 223, 123711. http://dx.doi.org/10.1016/j.polymer.2021.123711.

62 Handwerker, M., Wellnitz, J., Marzbani, H., & Tetzlaff, U. (2021). Annealing of chopped and continuous fibre reinforced polyamide 6 produced by fused filament fabrication. Composites. Part B, Engineering, 223, 109119. http://dx.doi.org/10.1016/j.compositesb.2021.109119.

63 Hagihara, H., Watanabe, R., Shimada, T., Funabashi, M., Kunioka, M., & Sato, H. (2018). Degradation mechanism of carbon fiber-reinforced thermoplastics exposed to hot steam studied by chemical and structural analyses of nylon 6 matrix. Composites. Part A, Applied Science and Manufacturing, 112, 126-133. http://dx.doi.org/10.1016/j.compositesa.2018.05.034.

64 Ma, Y., Jin, S., Yokozeki, T., Ueda, M., Yang, Y., Elbadry, E. A., Hamada, H., & Sugahara, T. (2020). Effect of hot water on the mechanical performance of unidirectional carbon fiber-reinforced nylon 6 composites. Composites Science and Technology, 200, 108426. http://dx.doi.org/10.1016/j.compscitech.2020.108426.

65 Chabaud, G., Castro, M., Denoual, C., & Le Duigou, A. (2019). Hygromechanical properties of 3D printed continuous carbon and glass fibre reinforced polyamide composite for outdoor structural applications. Additive Manufacturing, 26, 94-105. http://dx.doi.org/10.1016/j.addma.2019.01.005.

66 Paolucci, F., van Mook, M. J. H., Govaert, L. E., & Peters, G. W. M. (2019). Influence of post-condensation on the crystallization kinetics of PA12: from virgin to reused powder. Polymer, 175, 161-170. http://dx.doi.org/10.1016/j.polymer.2019.05.009.

67 Ma, N., Liu, W., Ma, L., He, S., Liu, H., Zhang, Z., Sun, A., Huang, M., & Zhu, C. (2020). Crystal transition and thermal behavior of Nylon 12. e-Polymers, 20(1), 346-352. http://dx.doi.org/10.1515/epoly-2020-0039.

68 Su, Y., Jia, Z., Niu, B., & Bi, G. (2017). Size effect of depth of cut on chip formation mechanism in machining of CFRP. Composite Structures, 164, 316-327. http://dx.doi.org/10.1016/j.compstruct.2016.11.044.

69 Ervine, P., O’Donnell, G. E., & Walsh, B. (2015). Fundamental investigations into burr formation and damage mechanisms in the micro-milling of a biomedical grade polymer. Machining Science and Technology, 19(1), 112-133. http://dx.doi.org/10.1080/10910344.2014.991028.

70 Davim, J. P., Silva, L. R., Festas, A., & Abrão, A. M. (2009). Machinability study on precision turning of PA66 polyamide with and without glass fiber reinforcing. Materials & Design, 30(2), 228-234. http://dx.doi.org/10.1016/j.matdes.2008.05.003.

71 Ferreira, I., Madureira, R., Villa, S., de Jesus, A., Machado, M., & Alves, J. L. (2020). Machinability of PA12 and short fibre–reinforced PA12 materials produced by fused filament fabrication. International Journal of Advanced Manufacturing Technology, 107(1), 885-903. http://dx.doi.org/10.1007/s00170-019-04839-z.

72 Chang, D.-Y., Lin, C.-H., Wu, X.-Y., Yang, C.-C., & Chou, S.-C. (2021). Cutting force, vibration, and temperature in drilling on a thermoplastic material of PEEK. Journal of Thermoplastic Composite Materials, 089270572110523. http://dx.doi.org/10.1177/08927057211052325.

73 Yan, Y., Mao, Y., Li, B., & Zhou, P. (2021). Machinability of the thermoplastic polymers: PEEK, PI, and PMMA. Polymers, 13(1), 69. http://dx.doi.org/10.3390/polym13010069. PMid:33375347.

74 Mohankumar, P., Ajayan, J., Yasodharan, R., Devendran, P., & Sambasivam, R. (2019). A review of micromachined sensors for automotive applications. Measurement: Journal of the International Measurement Confederation, 140, 305-322. http://dx.doi.org/10.1016/j.measurement.2019.03.064.

75 Hiwale, S., & Rajiv, B. (2020). Experimental investigations of laser machining process parameters using response surface methodology. Materials Today: Proceedings, 44(Pt 6), 3939-3945. http://dx.doi.org/10.1016/j.matpr.2020.09.295.

76 Bañon, F., Sambruno, A., Batista, M., Simonet, B., & Salguero, J. (2020). Study of the surface quality of carbon fiber–reinforced thermoplastic matrix composite (CFRTP) machined by abrasive water jet (AWJM). International Journal of Advanced Manufacturing Technology, 107(7), 3299-3313. http://dx.doi.org/10.1007/s00170-020-05215-y.

77 Li, M., Soo, S. L., Aspinwall, D. K., Pearson, D., & Leahy, W. (2018). Study on tool wear and workpiece surface integrity following drilling of CFRP laminates with variable feed rate strategy. Procedia CIRP, 71, 407-412. http://dx.doi.org/10.1016/j.procir.2018.05.055.

78 Karatas, E., Gul, O., Karsli, N. G., & Yilmaz, T. (2019). Synergetic effect of graphene nanoplatelet, carbon fiber and coupling agent addition on the tribological, mechanical and thermal properties of polyamide 6,6 composites. Composites. Part B, Engineering, 163, 730-739. http://dx.doi.org/10.1016/j.compositesb.2019.01.014.

79 Kießling, R., Dittes, A., Lampke, T., & Ihlemann, J. (2021). Coupled experimental and simulative investigation of the influence of polymer moisture content on the strength of amino-silane-mediated aluminum polyamide 6 joints. International Journal of Adhesion and Adhesives, 109, 102906. http://dx.doi.org/10.1016/j.ijadhadh.2021.102906.

80 Tapper, R. J., Longana, M. L., Hamerton, I., & Potter, K. D. (2019). A closed-loop recycling process for discontinuous carbon fibre polyamide 6 composites. Composites. Part B, Engineering, 179, 107418. http://dx.doi.org/10.1016/j.compositesb.2019.107418.

81 European Parliament and Council of the European Union. Regulation (EC) No 443/2009 of The European Parliament and of The Council of 23 April 2009. (2009). Setting emission performance standards for new passenger cars as part of the Community’s integrated approach to reduce CO2 emissions from light-duty vehicles. Official Journal of the European Union, France. Retrieved in 2022, May 17, from https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=celex%3A32009R0443

82 European Parliament and Council of European Union. Directive 2008/98/EC of The European Parliament nnd of The Council of 19 November 2008. (2008). On waste and repealing certain Directives. Official Journal of the European Union, France. Retrieved in 2022, May 17, from https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32008L0098&from=EN

83 Chohan, J. S., & Singh, R. (2022). Thermosetting polymers: a review on primary, secondary, tertiary and quaternary recycling. Encyclopedia of Materials: Plastics and Polymers, 1, 603-610. http://dx.doi.org/10.1016/b978-0-12-820352-1.00116-4.

84 Howarth, J., Mareddy, S. S. R., & Mativenga, P. T. (2014). Energy intensity and environmental analysis of mechanical recycling of carbon fibre composite. Journal of Cleaner Production, 81, 46-50. http://dx.doi.org/10.1016/j.jclepro.2014.06.023.

85 Chanda, M. (2021). Chemical aspects of polymer recycling. Advanced Industrial and Engineering Polymer Research, 4(3), 133-150. http://dx.doi.org/10.1016/j.aiepr.2021.06.002.

86 Lee, J., Kwon, E. E., Lam, S. S., Chen, W.-H., Rinklebe, J., & Park, Y.-K. (2021). Chemical recycling of plastic waste via thermocatalytic routes. Journal of Cleaner Production, 321, 128989. http://dx.doi.org/10.1016/j.jclepro.2021.128989.

87 Nemade, A. M., & Zope, V. S. (2020). Chemical recycling of polyamide waste. Journal of Engineering Sciences, 11(4), 1235-1238.

88 Alberti, C., Figueira, R., Hofmann, M., Koschke, S., & Enthaler, S. (2019). Chemical recycling of end-of-life polyamide 6 via ring closing depolymerization. ChemistrySelect, 4(43), 12638-12642. http://dx.doi.org/10.1002/slct.201903970.

89 Kamimura, A., Shiramatsu, Y., & Kawamoto, T. (2019). Depolymerization of polyamide 6 in hydrophilic ionic liquids. Green Energy and Environment, 4(2), 166-170. http://dx.doi.org/10.1016/j.gee.2019.01.002.

90 Kumar, A., von Wolff, N., Rauch, M., Zou, Y.-Q., Shmul, G., Ben-David, Y., Leitus, G., Avram, L., & Milstein, D. (2020). Hydrogenative depolymerization of nylons. Journal of the American Chemical Society, 142(33), 14267-14275. http://dx.doi.org/10.1021/jacs.0c05675. PMid:32706584.

91 Mondragon, G., Kortaberria, G., Mendiburu, E., González, N., Arbelaiz, A., & Peña-Rodriguez, C. (2020). Thermomechanical recycling of polyamide 6 from fishing nets waste. Journal of Applied Polymer Science, 137(10), 48442. http://dx.doi.org/10.1002/app.48442.

92 Kunchimon, S. Z., Tausif, M., Goswami, P., & Cheung, V. (2019). Polyamide 6 and thermoplastic polyurethane recycled hybrid Fibres via twin-screw melt extrusion. Journal of Polymer Research, 26(7), 162. http://dx.doi.org/10.1007/s10965-019-1827-0.

93 Souza, G. P. M., Anjos, E. G. R., Montagna, L. S., Ferro, O., & Passador, F. R. (2019). A new strategy for the use of post-processing vacuum bags from aerospace supplies: nucleating agent to LLDPE phase in PA6/LLDPE blends. Recycling, 4(2), 18. http://dx.doi.org/10.3390/recycling4020018.

94 Moreno, D. D. P., & Saron, C. (2018). Influence of compatibilizer on the properties of low-density polyethylene/polyamide 6 blends obtained by mechanical recycling of multilayer film waste. Waste Management & Research, 36(8), 729-736. http://dx.doi.org/10.1177/0734242X18777795. PMid:29871552.

95 Pietroluongo, M., Padovano, E., Frache, A., & Badini, C. (2019). Mechanical recycling of an end-of-life automotive composite component. Sustainable Materials and Technologies, 23, e00143. http://dx.doi.org/10.1016/j.susmat.2019.e00143.

96 Češarek, U., Pahovnik, D., & Žagar, E. (2020). Chemical recycling of aliphatic polyamides by microwave-assisted hydrolysis for efficient monomer recovery. ACS Sustainable Chemistry & Engineering, 8(43), 16274-16282. http://dx.doi.org/10.1021/acssuschemeng.0c05706. PMid:33194457.

97 Datta, J., Błażek, K., Włoch, M., & Bukowski, R. (2018). A New approach to chemical recycling of polyamide 6.6 and synthesis of polyurethanes with recovered intermediates. Journal of Polymers and the Environment, 26(12), 4415-4429. http://dx.doi.org/10.1007/s10924-018-1314-4.
 

6356fa34a9539537441595f4 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections