Polímeros: Ciência e Tecnologia
https://www.revistapolimeros.org.br/article/doi/10.1590/0104-1428.20220029
Polímeros: Ciência e Tecnologia
Original Article

Evaluation of magnetic poly(methyl methacrylate) microspheres as catalysts in heterogeneous Fenton processes

Alan Kardec da Silva; Ezaine Cristina Corrêa Torquato; Jacira Aparecida Castanharo; Marcos Antonio da Silva Costa; Mônica Regina da Costa Marques; Luciana da Cunha Costa

Downloads: 0
Views: 404

Abstract

This work reports the preparation of magnetic polymeric microspheres based on poly(methyl methacrylate) and the investigation of these materials as catalysts in heterogeneous Fenton processes for the decolorization of methyl orange (MO). The microspheres were prepared by polymerization of the magnetic material together with the monomers by aqueous suspension polymerization. The microspheres had specific surface area of 48.2 m2 g-1. Mossbauer data indicated that the magnetic material was a mixture of magnetite (31%), maghemite (21%), and goethite (48%). Fenton reactions were performed by varying the concentration of H2O2, pH, composite mass, and contact time. The highest color removal rates (around 80%) were reached at pH 3.0, 20% w/v of composite, 20 minutes contact time, and 10 ppm of H2O2. The composite could be reused during four cycles with removal efficiency above 50%. The results indicated that the adsorption and oxidation mechanisms act together determining the variation of the MO dye removal.

 

 

 

 

 

 

 

Keywords

heterogeneous Fenton reactions, magnetic materials, methyl orange, poly(methyl methacrylate) microspheres

References

1 Arshadi, M., Abdolmaleki, M. K., Mousavinia, F., Khalafi-Nezhad, A., Firouzabadi, H., & Gil, A. (2016). Degradation of methyl orange by heterogeneous Fenton-like oxidation on a nano-organometallic compound in the presence of multi-walled carbon nanotubes. Chemical Engineering Research & Design, 112, 113-121. http://dx.doi.org/10.1016/j.cherd.2016.05.028.

2 Alansi, A. M., Al-Qunaibit, M., Alade, I. O., Qahtan, T. F., & Saleh, T. A. (2018). Visible–light responsive BiOBr nanoparticles loaded on reduced graphene oxide for the photocatalytic degradation of dye. Journal of Molecular Liquids, 253, 297-304. http://dx.doi.org/10.1016/j.molliq.2018.01.034.

3 Tunç, S., Gürkan, T., & Duman, O. (2012). On-line spectrophotometric method for the determination of optimum operation parameters on the decolorization of Acid Red 66 and Direct Blue 71 from aqueous solution by Fenton process. Chemical Engineering Journal, 181-182, 431-442. http://dx.doi.org/10.1016/j.cej.2011.11.109.

4 Liu, Y., Zhang, G., Chong, S., Zhang, N., Chang, H., Huang, T., & Fang, S. (2017). NiFe(C2O4)x as a heterogeneous Fenton catalyst for the removal of methyl orange. Journal of Environmental Management, 192, 150-155. http://dx.doi.org/10.1016/j.jenvman.2017.01.064. PMid:28160642.

5 Ferroudj, N., Beaunier, P., Davidson, A., & Abramson, S. (2021). Fe3+ -doped ordered mesoporous γ-Fe2O3/SiO2 microspheres as a highly efficient magnetically separable heterogeneous Fenton catalyst. Microporous and Mesoporous Materials, 326, 111373. http://dx.doi.org/10.1016/j.micromeso.2021.111373.

6 Castanharo, J. A., Ferreira, I. L. M., Costa, M. A. S., Silva, M. R., Costa, G. M., & Oliveira, M. G. (2015). Magnetic microspheres based on poly(divinylbenzene-co-methyl methacrylate) obtained by suspension polymerization. Polímeros: Ciência e Tecnologia, 25(2), 192-199. http://dx.doi.org/10.1590/0104-1428.1666.

7 Castanharo, J. A., Ferreira, I. L. M., Silva, M. R., & Costa, M. A. S. (2018). Core-shell magnetic particles obtained by seeded suspension polymerization of acrylic monomers. Polímeros: Ciência e Tecnologia, 28(5), 460-467. http://dx.doi.org/10.1590/0104-1428.10517.

8 Jaiswal, K. K., Manikandan, D., Murugan, R., & Ramaswamy, A. P. (2018). Microwave-assisted rapid synthesis of Fe3O4/Poly(styrene-divinylbenzene-acrylic acid) polymeric magnetic composites and investigation of their structural and magnetic properties. European Polymer Journal, 98, 177-190. http://dx.doi.org/10.1016/j.eurpolymj.2017.11.005.

9 Abdullah, N., Tajuddin, M. H., & Yusof, N. (2018). Carbon-based polymer nanocomposites for dye and pigment removal. In A. F. Ismail & P. S. Goh (Eds.), Carbon-based polymer nanocomposites for environmental and energy applications (pp. 305-329). India: Elsevier. http://dx.doi.org/10.1016/B978-0-12-813574-7.00013-7.

10 Xu, H., Li, B., Shi, T., Wang, Y., & Komarneni, S. (2018). Nanoparticles of magnetite anchored onto few-layer graphene: a highly efficient Fenton-like nanocomposite catalyst. Journal of Colloid and Interface Science, 532, 161-170. http://dx.doi.org/10.1016/j.jcis.2018.07.128. PMid:30081262.

11 Quadrado, R. F. N., & Fajardo, A. R. (2017). Fast decolorization of azo methyl orange via heterogeneous Fenton and Fenton-like reactions using alginate-Fe2+/Fe3+ films as catalysts. Carbohydrate Polymers, 177, 443-450. http://dx.doi.org/10.1016/j.carbpol.2017.08.083. PMid:28962790.

12 Gao, Y., Zhang, J., Liang, J., Yuan, D., & Zhao, W. (2022). Research progress of poly(methyl methacrylate) microspheres: preparation, functionalization and application. European Polymer Journal, 175, 111379. http://dx.doi.org/10.1016/j.eurpolymj.2022.111379.

13 Shan, J., Wang, L., Yu, H.-J., Tai, Y. & Akram, M. (2015). Synthesis and characterization of magnetic porous Fe3O4/poly(methylmethacrylate-co-divinylbenzene) microspheres and their use in removal of Rhodamine B. Journal of Zhejiang University. Science A, 16(8), 669-679. http://dx.doi.org/10.1631/jzus.A1500096.

14 Panda, N., Sahoo, H., & Mohapatra, S. (2011). Decolorization of methyl orange using Fenton-like mesoporous Fe2O3–SiO2 composite. Journal of Hazardous Materials, 185(1), 359-365. http://dx.doi.org/10.1016/j.jhazmat.2010.09.042. PMid:20934248.

15 Chen, Z., Jin, X., Chen, Z., Megharaj, M., & Naidu, R. (2011). Removal of methyl orange from aqueous solution using bentonite-supported nanoscale zero-valent iron. Journal of Colloid and Interface Science, 363(2), 601-607. http://dx.doi.org/10.1016/j.jcis.2011.07.057. PMid:21864843.

16 Silvertein, R. M., Webster, F. X., & Kiemle, D. J. (2005). Spectrometric identification of organic compounds. New York: Jonhn Wiley & Sons.

17 Polikarpov, M., Cherepanov, V., Chuev, M., Shishkov, S., & Yakimov, S. (2010). Mössbauer spectra of hematite and magnetite nanoparticles in polymer composites. Journal of Physics: Conference Series, 217, 012114. http://dx.doi.org/10.1088/1742-6596/217/1/012114.

18 Thakur, M., De, K., Giri, S., Si, S., Kotal, A., & Mandal, T. K. (2006). Interparticle interaction and size effect in polymer coated magnetite nanoparticles. Journal of Physics Condensed Matter, 18(39), 9093-9104. http://dx.doi.org/10.1088/0953-8984/18/39/035.

19 Oliveira, L. C. A., Fabris, J. D., & Pereira, M. C. (2013). Iron oxides and their applications in catalytic processes: a review. Quimica Nova, 36(1), 123-130. http://dx.doi.org/10.1590/S0100-40422013000100022.

20 Freitas, N. S., Alzamora, M., Sanchez, D. R., Licea, Y. E., Senra, J. D., & Carvalho, N. M. F. (2021). Green palladium nanoparticles prepared with glycerol and supported on maghemite for dye removal application. Journal of Environmental Chemical Engineering, 9(1), 104856. http://dx.doi.org/10.1016/j.jece.2020.104856.

21 Wan, D., Li, W., Wang, G., Lu, L., & Wei, X. (2017). Degradation of p-Nitrophenol using magnetic Fe0/Fe3O4/Coke composite as a heterogeneous Fenton-like catalyst. The Science of the Total Environment, 574, 1326-1334. http://dx.doi.org/10.1016/j.scitotenv.2016.08.042. PMid:27519319.

22 Shi, X., Tian, A., You, J., Yang, H., Wang, Y., & Xue, X. (2018). Degradation of organic dyes by a new heterogeneous Fenton reagent - Fe2GeS4 nanoparticle. Journal of Hazardous Materials, 353, 182-189. http://dx.doi.org/10.1016/j.jhazmat.2018.04.018. PMid:29674093.

23 Chu, J., Kang, J., Park, S., & Lee, C. (2020). Application of magnetic biocharderived from food waste in heterogeneous sono-Fenton-like process for removal of organic dyes from aqueous solution. Journal of Water Process Engineering, 37, 101455. http://dx.doi.org/10.1016/j.jwpe.2020.101455.

24 Vu, A.-T., Xuan, T. N., & Lee, C.-H. (2019). Preparation of mesoporous Fe2O3·SiO2 composite from rice husk as an efficient heterogeneous Fenton-like catalyst for degradation of organic dyes. Journal of Water Process Engineering, 28, 169-180. http://dx.doi.org/10.1016/j.jwpe.2019.01.019.

25 Wołowicz, A., & Hubicki, Z. (2010). Effect of matrix and structure types of ion exchangers on palladium(II) sorption from acidic medium. Chemical Engineering Journal, 160(2), 660-670. http://dx.doi.org/10.1016/j.cej.2010.04.009.

26 Shao, Y., & Chen, H. (2018). Heterogeneous Fenton oxidation of phenol in fixed-bed reactor using Fe nanoparticles embedded within ordered mesoporous carbons. Chemical Engineering Research & Design, 132, 57-68. http://dx.doi.org/10.1016/j.cherd.2017.12.039.
 

6358433da953951d2807b773 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections