Polímeros: Ciência e Tecnologia
https://www.revistapolimeros.org.br/article/doi/10.1590/0104-1428.1986
Polímeros: Ciência e Tecnologia
Scientific & Technical Article

Biobased additive plasticizing Polylactic acid (PLA)

Maiza, Mounira; Benaniba, Mohamed Tahar; Quintard, Guilhem; Massardier-Nageotte, Valerie

Downloads: 2
Views: 1061

Abstract

Polylactic acid (PLA) is an attractive candidate for replacing petrochemical polymers because it is from renewable resources. In this study, a specific PLA 2002D was melt-mixed with two plasticizers: triethyl citrate (TEC) and acetyl tributyl citrate (ATBC). The plasticized PLA with various concentrations were analyzed by differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), melt flow index (MFI), thermogravimetric analysis (TGA), X-ray diffraction (XRD), UV-Visible spectroscopy and plasticizer migration test. Differential scanning calorimetry demonstrated that the addition of TEC and ATBC resulted in a decrease in glass transition temperature (Tg), and the reduction was the largest with the plasticizer having the lowest molecular weight (TEC). Plasticizing effect was also shown by decrease in the dynamic storage modulus and viscosity of plasticized mixtures compared to the treated PLA. The TGA results indicated that ATBC and TEC promoted a decrease in thermal stability of the PLA. The X-ray diffraction showed that the PLA have not polymorphic crystalline transition. Analysis by UV-Visible spectroscopy showed that the two plasticizers: ATBC and TEC have no effect on the color change of the films. The weight loss plasticizer with heating time and at 100°C is lesser than at 135 °C. Migration of TEC and ATBC results in cracks and changed color of material. We have concluded that the higher molecular weight of citrate in the studied exhibited a greater plasticizing effect to the PLA.

Keywords

Polylactic acid (PLA), plasticizer, triethyl citrate, acetyl tributyl citrate.

References

1. Al-Mulla, E. A. J., Yunus, W. M. Z. W., Ibrahim, N. A. B., & Rahman, M. Z. A. (2010). Properties of epoxidized palm oil plasticized polytlactic acid. Journal of Materials Science, 45(7), 1942-1946. http://dx.doi.org/10.1007/s10853-009-4185-1.

2. Phetwarotai, W., Potiyaraj, P., & Aht-Ong, D. (2012). Characteristics of biodegradable polylactide/gelatinized starch films: Effects of starch, plasticizer, and compatibilizer. Journal of Applied Polymer Science, 126(1), 162-172. http://dx.doi.org/10.1002/app.36736.

3. Li, H., & Huneault, M. A. (2007). Effect of nucleation and plasticization on the crystallization of poly (lactic acid). Polymer, 48(23), 6855-6866. http://dx.doi.org/10.1016/j.polymer.2007.09.020.

4. Yu, L., Dean, K., & Li, L. (2006). Polymer blends and composites from renewable resources. Progress in Polymer Science, 31(6), 576-602. http://dx.doi.org/10.1016/j.progpolymsci.2006.03.002.

5. Huneault, M. A., & Li, H. (2007). Morphology and properties of compatibilized polylactide/thermoplastic starch blends. Polymer, 48(1), 270-280. http://dx.doi.org/10.1016/j.polymer.2006.11.023.

6. Pillin, I., Montrelay, N., & Grohens, Y. (2006). Thermo-mechanical characterization of plasticized PLA: Is the miscibility the only significant factor. Polymer, 47(13), 4676-4682. http://dx.doi.org/10.1016/j.polymer.2006.04.013.

7. Kulinski, Z., & Piorkowska, E. (2005). Crystallization, structure and properties of plasticized poly (L-lactide). Polymer, 46(23), 10290-10300. http://dx.doi.org/10.1016/j.polymer.2005.07.101.

8. Hu, Y., Rogunova, M., Topolkaraev, V., Hiltner, A., & Baer, E. (2003). Aging of poly (lactide)/poly (ethylene glycol) blends. Part 1. Poly (lactide) with low stereoregularity. Polymer, 44(19), 5701-5710. http://dx.doi.org/10.1016/S0032-3861(03)00614-1.

9. Hu, Y., Hu, Y. S., Topolkaraev, V., Hiltner, A., & Baer, E. (2003). Aging of poly (lactide)/poly (ethylene glycol) blends. Part 2. Poly (lactide) with high stereoregularity. Polymer, 44(19), 5711-5720. http://dx.doi.org/10.1016/S0032-3861(03)00615-3.

10. Younes, H., & Cohn, D. (1988). Phase separation in poly (ethylene glycol)/poly (lactic acid) blends. European Polymer Journal, 24(8), 765-773. http://dx.doi.org/10.1016/0014-3057(88)90013-4.

11. Xiao, H., Liu, F., Jiang, T., & Yeh, J. T. (2010). Kinetics and crystal structure of isothermal crystallization of poly (lactic acid) plasticized with triphenyl phosphate. Journal of Applied Polymer Science, 117(5), 2980-2992. http://dx.doi.org/10.1002/app.32225.

12. Burgos, N., Martino, V. P., & Jiménez, A. (2013). Characterization and ageing study of poly (lactic acid) films plasticized with oligomeric lactic acid. Polymer Degradation & Stability, 98(2), 651-658. http://dx.doi.org/10.1016/j.polymdegradstab.2012.11.009.

13. Liu, H., & Zhang, J. (2011). Research progress in toughening modification of poly (lactic acid). Journal of Polymer Science. Part B, Polymer Physics, 49(15), 1051-1083. http://dx.doi.org/10.1002/polb.22283.

14. Harte, I., Birkinshaw, C., Jones, E., Kennedy, J., & DeBarra, E. (2013). The effect of citrate ester plasticizers on the thermal and mechanical properties of poly (DL-lactide). Journal of Applied Polymer Science, 127(3), 1997-2003. http://dx.doi.org/10.1002/app.37600.

15. Martino, V. P., Ruseckaite, R. A., & Jiménez, A. (2006). Thermal and mechanical characterization of plasticized poly (l-lactide-co-d, l-lactide) films for food packaging. Journal of Thermal Analysis and Calorimetry, 86(3), 707-712. http://dx.doi.org/10.1007/s10973-006-7897-3.

16. Ljungberg, N., & Wesslén, B. (2003). Tributyl citrate oligomers as plasticizers for poly (lactic acid): thermo-mechanical film properties and aging. Polymer, 44(25), 7679-7688. http://dx.doi.org/10.1016/j.polymer.2003.09.055.

17. Urayama, H., Moon, S., & Kimura, Y. (2003). Microstructure and thermal properties of polylactides with different L- and D-Unit Sequences: importance of the helical nature of the L-sequenced segments. Macromolecular Materials and Engineering, 288(2), 137-143. http://dx.doi.org/10.1002/mame.200390006.

18. Gutierrez-Villarreal, M. H., & Rodrìguez-Velazquez, J. (2007). The effect of citrate esters as plasticizers on the thermal and mechanical properties of poly (methyl methacrylate). Journal of Applied Polymer Science, 105(4), 2370-2375. http://dx.doi.org/10.1002/app.25482.

19. Labrecque, L. V., Kumar, R. A., Davé, V., Gross, R. A., & McCarthy, S. P. (1997). Citrate esters as plasticizers for poly (lactic acid). Journal of Applied Polymer Science, 66(8), 1507-1513. http://dx.doi.org/10.1002/(SICI)1097-4628(19971121)66:8<1507::AID-APP11>3.0.CO;2-0.

20. Ren, Z., Dong, L., & Yang, Y. (2006). Dynamic mechanical and thermal properties of plasticized poly (lactic acid). Journal of Applied Polymer Science, 101(3), 1583-1590. http://dx.doi.org/10.1002/app.23549.

21. Perinović, S., Andričić, B., & Čagalj, M. (2010). Migration and leaching of plasticizer from plasticized poly (L-lactide)/olive stone flour composites. In Proceedings of the 14th European Conference on Composite Materials (pp. 1-10). Budapest.

22. Oyama, H. T. (2009). Super-tough poly(lactic acid) materials: reactive blending with ethylene copolymer. Polymer, 50(3), 747-751. http://dx.doi.org/10.1016/j.polymer.2008.12.025.

23. Lemmouchi, Y., Murariu, M., Santos, A. M. D., Amass, A. J., Schacht, E., & Dubois, P. (2009). Plasticization of poly (lactide) with blends of tributyl citrate and low molecular weight poly (d, l-lactide)-b-poly (ethylene glycol) copolymers. European Polymer Journal, 45(10), 2839-2848. http://dx.doi.org/10.1016/j.eurpolymj.2009.07.006.

24. Courgneau, C., Domenek, S., Guinault, A., Avérous, L., & Ducruet, V. (2011). Analysis of the structure-properties relationships of different multiphase systems based on plasticized poly (lactic acid). Journal of Polymers and the Environment, 19(2), 362-371. http://dx.doi.org/10.1007/s10924-011-0285-5.

25. Hassouna, F., Raquez, J.-M., Addiego, F., Dubois, P., Toniazzo, V., & Ruch, D. (2011). New approach on the development of plasticized polylactide (PLA): grafting of poly (ethylene glycol) (PEG) via reactive extrusion. European Polymer Journal, 47(11), 2134-2144. http://dx.doi.org/10.1016/j.eurpolymj.2011.08.001.

26. David, L., Quinson, R., Gauthier, C., & Perez, J. (1997). The role of anelasticity in high stress mechanical response and physical properties of glassy polymers. Polymer Engineering and Science, 37(10), 1633-1640. http://dx.doi.org/10.1002/pen.11811.

27. Ferrarezi, M. M. F., Taipina, M. O. L., Silva, C. E., & Gonçalves, M. C. (2013). Poly (ethylene glycol) as a compatibilizer for poly (lactic acid)/thermoplastic starch blends. Journal of Polymers and the Environment, 21(1), 151-159. http://dx.doi.org/10.1007/s10924-012-0480-z.

28. Sungsanit, K., Kao, N., Bhattacharya, S. N., & Pivsaart, S. (2010). Physical and rheological properties of plasticized linear and branched PLA. Rheology Journal, 22(3), 187-195.

29. Burgos, N., Tolaguera, D., Fiori, S., & Jiménez, A. (2014). Synthesis and characterization of lactic acid oligomers: evaluation of performance as poly (Lactic Acid) plasticizers. Journal of Polymers and the Environment, 22(2), 227-235. http://dx.doi.org/10.1007/s10924-013-0628-5.

30. Fan, Y., Nishida, H., Shirai, Y., & Endo, T. (2004). Thermal stability of poly (l-lactide): influence of end protection by acetyl group. Polymer Degradation & Stability, 84(1), 143-149. http://dx.doi.org/10.1016/j.polymdegradstab.2003.10.004.

31. Xu, L., Crawford, K., & Gorman, C. B. (2011). Effects of temperature and pH on the degradation of poly (lactic acid) brushes. Macromolecule, 44(12), 4777-4782. http://dx.doi.org/10.1021/ma2000948.

32. Kalb, B., & Pennings, A. J. (1980). General crystallization behaviour of poly (-lactic acid). Polymer, 21(6), 607-612. http://dx.doi.org/10.1016/0032-3861(80)90315-8.

33. Miyajima, M., Koshika, A., Okada, J., Ikeda, M., & Nishimura, K. (1997). Effect of polymer crystallinity on papaverine release from poly (L-lactic acid) matrix. Journal of Controlled Release, 49(2-3), 207-215. http://dx.doi.org/10.1016/S0168-3659(97)00081-3.

34. Li, C., Cheng, L., Zhang, Y., Guo, S., & Wu, W. (2010). Effects of implant diameter, drug loading and end-capping on praziquantel release from PCL implants. International Journal of Pharmaceutics, 386(1-2), 23-29. http://dx.doi.org/10.1016/j.ijpharm.2009.10.046. PMid:19895876.
588371c97f8c9d0a0c8b4a73 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections