Polímeros: Ciência e Tecnologia
https://www.revistapolimeros.org.br/article/doi/10.1590/0104-1428.1840
Polímeros: Ciência e Tecnologia
Scientific & Technical Article

Acacia bark residues as filler in polypropylene composites

Taflick, Ticiane; Maich, Élida Gonçalves; Ferreira, Laís Dias; Bica, Clara I. D.; Rodrigues, Silvia Rosane Santos; Nachtigall, Sônia M. B.

Downloads: 0
Views: 944

Abstract

Large amounts of acacia bark residues are produced each day after tannin extraction with hot water, being generally burned. This by-product was chemically characterized and used as filler in polypropylene (PP) composites, considering different particle sizes and concentrations. The materials produced by melt blending had their mechanical and thermal properties evaluated. It was verified that, even containing a significant amount of extractable compounds, the acacia bark particles can produce PP composites with higher impact properties, higher crystallization temperature and higher degradation temperature in comparison to the polymer matrix.

Keywords

composites, natural fibers, impact properties, tensile properties, thermal degradation.

References

1. Ashori, A. (2008). Wood-plastic composites as promising green-composites for automotive industries! Bioresource Technology, 99(11), 4661-4667. http://dx.doi.org/10.1016/j.biortech.2007.09.043. PMid:18068352.

2. Monteiro, S. N., Calado, V., Rodriguez, R. J. S., & Margem, F. M. (2012). Thermogravimetric behavior of natural fibers reinforced polymer composites – An overview. Materials Science and Engineering A, 557, 17-28. http://dx.doi.org/10.1016/j.msea.2012.05.109.

3. Hristov, V. N., Lach, R., & Grellmann, W. (2004). Impact fracture behavior of modified polypropylene/wood fiber composites. Polymer Testing, 23(5), 581-589. http://dx.doi.org/10.1016/j.polymertesting.2003.10.011.

4. Vianna, W. L., Correa, C. A., & Razzino, C. A. (2004). Efeitos do tipo de poliestireno de alto impacto nas propriedades de compósitos termoplásticos com farinha de resíduo de madeira. Polímeros: Ciência e Tecnologia, 14(5), 339-348. http://dx.doi.org/10.1590/S0104-1428200400500012.

5. Correa, C. A., Fonseca, C. N. P., Neves, S., Razzino, C. A., & Hage, E., Jr. (2003). Compósitos termoplásticos com madeira. Polímeros: Ciência e Tecnologia, 13(3), 154-165. http://dx.doi.org/10.1590/S0104-14282003000300005.

6. Nachtigall, S. M. B., Cerveira, G. S., & Rosa, S. M. L. (2007). New polimeric-coupling agente for polypropylene/wood-flour composites. Polymer Testing, 26(5), 619-628. http://dx.doi.org/10.1016/j.polymertesting.2007.03.007.

7. Rodolfo, A., Jr., & John, V. M. (2006). Desenvolvimento de PVC reforçado com resíduos de Pinus para substituir madeira convencional em diversas aplicações. Polímeros: Ciência e Tecnologia, 16(1), 1-11. http://dx.doi.org/10.1590/S0104-14282006000100005.

8. Harkin, J. M. & Rowe, J. M. (1971). Bark and its possible uses (Note FPl-091). Madison: USDA Forest Service Research.

9. Charão, L. S. (2005). Polinização em Acacia Mearsii De Wild. Revista de Ciências Agro-Ambientais, 3, 92-109. Retrieved in 26 June 2014, from www.unemat.br/revistas/rcaa

10. Yamaji, F. M., & Bonduelle, A. (2004). Utilização da serragem na produção de compósitos plástico-madeira. Revista Floresta, 34(1), 59-66. http://dx.doi.org/10.5380/rf.v34i1.2375.

11. Safdari, V., Khodadadi, H., Hosseinihashemi, S. K., & Ganjian, E. (2011). The effects of poplar bark and wood content on the mechanical properties of wood-polypropylene composites. BioResources, 6(4), 5180-5192. Retrieved in 26 June 2014, from www.ncsu.edu/bioresources

12. Santos, E. F., Moresco, M., Rosa, S. M. L., & Nachtigall, S. M. B. (2010). Extrusão de compósitos de PP com fibras curtas de coco: efeito da temperatura e agentes de acoplamento. Polímeros: Ciência e Tecnologia, 20(3), 215-220. http://dx.doi.org/10.1590/S0104-14282010005000036.

13. Moresco, M., Rosa, S. M. L., Santos, E. F., & Nachtigall, S. M. B. (2010). Agrofillers in polypropylene composites: a relationship between the density and the mechanical properties. Journal of Applied Polymer Science, 117(1), 400-408. http://dx.doi.org/10.1002/app.31602.

14. Becker, D., Kleinschmidt, A. C., Balzer, P. S., & Soldi, V. (2011). Influência da sequência de mistura do PP-MA nas propriedades dos compósitos de PP e fibra de bananeira. Polímeros: Ciência e Tecnologia, 21(1), 7-12. http://dx.doi.org/10.1590/S0104-14282011005000012.

15. Thygesen, A., Oddershede, J., Lilholt, H., Thomsen, A. B., & Stahl, K. (2005). On the determination of crystallinity and cellulose content in plant fibers. Cellulose, 12(6), 563-576. http://dx.doi.org/10.1007/s10570-005-9001-8.

16. Ayrilmis, N., & Kaymakci, A. (2013). Fast growing biomass as reinforcing filler in thermoplastic composites: Paulownia elongate wood. Industrial Crops and Products, 43, 457-464. http://dx.doi.org/10.1016/j.indcrop.2012.07.050.

17. Saini, G., Bharwaj, R., Choudhary, V., & Narula, A. K. (2010). Poly(vinyl chloride)-Acacia bark flour composite: effect of particle size and filler content on mechanical, thermal, and morphological characteristics. Journal of Applied Polymer Science, 117(3), 1309-1318. http://dx.doi.org/10.1002/app.29987.

18. Yemele, M. C. N., Koubaa, A., Cloutier, A., Soulounganga, P., & Wolcott, M. (2010). Effect of bark fiber content and size on the mechanical properties of bark/HDPE composites. Composites. Part A, Applied Science and Manufacturing, 41(1), 131-137. http://dx.doi.org/10.1016/j.compositesa.2009.06.005.

19. Poletto, M., Zattera, A. J., Forte, M. M. C., & Santana, R. M. C. (2012). Thermal decomposition of wood: influence of wood components and cellulose crystallite size. Bioresource Technology, 109, 148-153. http://dx.doi.org/10.1016/j.biortech.2011.11.122. PMid:22306076.

20. Saravanakumar, S. S., Kumaravel, A., Nagarajan, T., Sudhakar, P., & Baskaran, R. (2013). Characterization of a novel natural cellulosic fiber from Prosopis juliflora bark. Carbohydrate Polymers, 92(2), 1928-1933. http://dx.doi.org/10.1016/j.carbpol.2012.11.064. PMid:23399239.

21. Popescu, M.-C., Popescu, C.-M., Lisa, G., & Sakata, Y. (2011). Evaluation of morphological and chemical aspects of different wood species by spectroscopy and thermal methods. Journal of Molecular Structure, 988(1-3), 65-72. http://dx.doi.org/10.1016/j.molstruc.2010.12.004.

22. Ghallager, L. W., & McDonald, A. G. (2013). The effect of micron sized wood fibers in wood plastics composites. Maderas, Ciencia y Tecnología, 15(3), 357-374. http://dx.doi.org/10.4067/S078-221X2013005000028.

23. Stark, N. M., & Rowlands, R. E. (2003). Effects of wood fibers characteristics on mechanical properties of wood/polypropylene composites. Wood and Fiber Science, 35(2), 167-174.

24. Părpăriţă, E., Darie, R. N., Popescu, C. M., Uddin, M. D., & Vasile, C. (2014). Structure-morphology-mechanical properties relationship of some polypropylene/lignocellulosic composites. Materials & Design, 56, 763-772. http://dx.doi.org/10.1016/j.matdes.2013.12.033.

25. Najafi, S. K., Kiaefar, A., & Tajvidi, M. (2008). Effect of bark flour content on the hygroscopic characteristics of wood–polypropylene composites. Journal of Applied Polymer Science, 110(5), 3116-3120. http://dx.doi.org/10.1002/app.28852.

26. Yang, H., Yan, R., Chen, H., Zheng, C., Lee, D. H., & Liang, D. T. (2006). In-depth investigation of biomass pyrolysis based on three major components: hemicelluloses, cellulose and lignin. Energy & Fuels, 20(1), 388-393. http://dx.doi.org/10.1021/ef0580117.

27. Shebani, A. N., Van Reenen, A. J., & Meincken, M. (2009). The effect of wood species on the mechanical and thermal properties of wood–LLDPE composites. Journal of Composite Materials, 43(11), 1305-1318. http://dx.doi.org/10.1177/0021998308104548.
588371c17f8c9d0a0c8b4a50 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections