Polímeros: Ciência e Tecnologia
https://www.revistapolimeros.org.br/article/doi/10.1590/0104-1428.1835
Polímeros: Ciência e Tecnologia
Scientific & Technical Article

Bioactivity, biocompatibility and antimicrobial properties of a chitosan-mineral composite for periodontal tissue regeneration

Hurt, Andrew Paul; Kotha, Arun Kumar; Trivedi, Vivek; Coleman, Nichola Jayne

Downloads: 1
Views: 771

Abstract

A composite membrane of the polymer, chitosan, and the silver-exchanged mineral phase, tobermorite, was prepared by solvent casting and characterised by scanning electron microscopy and Fourier transform infrared spectroscopy. The in vitro bioactivity, cytocompatibility and antimicrobial activity of the composite were evaluated with respect to its potential application as a guided tissue regeneration (GTR) membrane. The in vitro bioactivity was verified by the formation of hydroxyapatite on the surface of the membrane in simulated body fluid and its cytocompatibility was established using MG63 human osteosarcoma cells. The presence of silver ions conferred significant antimicrobial activity against S. aureus, P. aeruginosa and E. coli. The findings of this investigation have indicated that the chitosan-silver-tobermorite composite is a prospective candidate for GTR applications.

Keywords

chitosan, tobermorite, silver, bioactive, antimicrobial, guided tissue regeneration, periodontal repair.

References

1. Shimauchi, H., Nemoto, E., Ishihata, H., & Shimomura, M. (2013). Possible functional scaffolds for periodontal regeneration. Japanese Dental Science Review, 49(4), 118-130. http://dx.doi.org/10.1016/j.jdsr.2013.05.001.

2. Xu, C., Lei, C., Meng, L., Wang, C., & Song, Y. (2012). Chitosan as a barrier membrane material in periodontal tissue regeneration. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 100B(5), 1435-1443. http://dx.doi.org/10.1002/jbm.b.32662. PMid:22287502.

3. Chinta, D. P., Katakam, P., Murthy, V. S. N., & Newton, M. J. (2013). Formulation and in-vitro evaluation of moxifloxacin loaded crosslinked chitosan films for the treatment of periodontitis. Journal of Pharmacy Research, 7(6), 483-490. http://dx.doi.org/10.1016/j.jopr.2013.06.019.

4. Sowmya, S., Bumgardener, J. D., Chennazhi, K. P., Nair, S. V., & Jayakumar, R. (2013). Role of nanostructured biopolymers and bioceramics in enamel, dentin and periodontal tissue regeneration. Progress in Polymer Science, 38(10–11), 1748-1772. http://dx.doi.org/10.1016/j.progpolymsci.2013.05.005.

5. Anitha, A., Sowmya, S., Sudheesh Kumar, P. T., Deepthi, S., Prasad Chennazhi, K., Ehrlich, H., Tsurkan, M., & Jayakumar, R. (2014). Chitin and chitosan in selected biomedical applications. Progress in Polymer Science, 39(9), 1644-1667. http://dx.doi.org/10.1016/j.progpolymsci.2014.02.008.

6. Jiang, T., Deng, M., James, R., Nair, L. S., & Laurencin, C. T. (2014). Micro- and nanofabrication of chitosan structures for regenerative engineering. Acta Biomaterialia, 10(4), 1632-1645. http://dx.doi.org/10.1016/j.actbio.2013.07.003. PMid:23851172.

7. Croisier, F., & Jérôme, C. (2013). Chitosan-based biomaterials for tissue engineering. European Polymer Journal, 49(4), 780-792. http://dx.doi.org/10.1016/j.eurpolymj.2012.12.009.

8. Goy, R. C., Britto, D., & Assis, O. B. G. (2009). A review of the antimicrobial activity of chitosan. Polímeros: Ciência e Tecnologia, 19(3), 241-247. http://dx.doi.org/10.1590/S0104-14282009000300013.

9. Fernandes, L. L., Resende, C. X., Tavares, D. S., Soares, G. A., Castro, L. O., & Granjeiro, J. M. (2011). Cytocompatibility of chitosan and collagen-chitosan scaffolds for tissue engineering. Polímeros: Ciência e Tecnologia, 21(1), 1-6. http://dx.doi.org/10.1590/S0104-14282011005000008.

10. Battistella, E., Varoni, E., Cochis, A., Palazzo, B., & Rimondini, L. (2011). Degradable polymers may improve dental practice. Journal of Applied Biomaterials & Functional Materials, 9(3), 223-231. http://dx.doi.org/10.5301/JABB.2011.8867. PMid:22139754.

11. Thien, D. V. H., Hsiao, S. W., Ho, M. H., Li, C. H., & Shih, J. L. (2013). Electrospun chitosan/hydroxyapatite nanofibers for bone tissue engineering. Journal of Materials Science, 48(4), 1640-1645. http://dx.doi.org/10.1007/s10853-012-6921-1.

12. Yeo, Y. J., Jeon, D. W., Kim, C. S., Choi, S. H., Cho, K. S., Lee, Y. K., & Kim, C. K. (2005). Effects of chitosan nonwoven membrane on periodontal healing of surgically created one-wall intrabony defects in beagle dogs. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 72B(1), 86-93. http://dx.doi.org/10.1002/jbm.b.30121. PMid:15389496.

13. Li, X., Wang, X., Zhao, T., Gao, B., Miao, Y., Zhang, D., & Dong, Y. (2014). Guided bone regeneration using chitosan-collagen membranes in dog dehiscence-type defect model. Journal of Oral and Maxillofacial Surgery, 72(2), 304.e1-304.e14. http://dx.doi.org/10.1016/j.joms.2013.09.042. PMid:24438600.

14. Ji, Q. X., Deng, J., Xing, X. M., Yuan, C. Q., Yu, X. B., Xu, Q. C., & Yue, J. (2010). Biocompatibility of a chitosan-based injectable thermosensitive hydrogel and its effects on dog periodontal tissue regeneration. Carbohydrate Polymers, 82(4), 1153-1160. http://dx.doi.org/10.1016/j.carbpol.2010.06.045.

15. Caridade, S. G., Merino, E. G., Alves, N. M., & Mano, J. F. (2012). Bioactivity and viscoelastic characterization of chitosan/bioglass® composite membranes. Macromolecular Bioscience, 12(8), 1106-1113. http://dx.doi.org/10.1002/mabi.201200036. PMid:22707301.

16. Saravanan, S., Nethala, S., Pattnaik, S., Tripathi, A., Moorthi, A., & Selvamurugan, N. (2011). Preparation, characterization and antimicrobial activity of a bio-composite scaffold containing chitosan/nano-hydroxyapatite/nano-silver for bone tissue engineering. International Journal of Biological Macromolecules, 49(2), 188-193. http://dx.doi.org/10.1016/j.ijbiomac.2011.04.010. PMid:21549747.

17. Lin, K., Chang, J., & Cheng, R. (2007). In vitro hydroxyapatite forming ability and dissolution of tobermorite nanofibers. Acta Biomaterialia, 3(2), 271-276. http://dx.doi.org/10.1016/j.actbio.2006.11.003. PMid:17234465.

18. Coleman, N. J. (2009). Aspects of the in vitro bioactivity and antimicrobial properties of Ag(+)- and Zn (2+)-exchanged 11 A tobermorites. Journal of Materials Science. Materials in Medicine, 20(6), 1347-1355. http://dx.doi.org/10.1007/s10856-009-3698-0. PMid:19214715.

19. Baek, S.-H., Plenk, H., Jr., & Kim, S. (2005). Periapical tissue responses and cementum regeneration with amalgam, SuperEBA, and MTA as root-end filling materials. Journal of Endodontics, 31(6), 444-449. http://dx.doi.org/10.1097/01.don.0000148145.81366.a5. PMid:15917684.

20. Katsamakis, S., Slot, D. E., Van der Sluis, L. W. M., & Van der Weijden, F. (2013). Histological responses of the periodontium to MTA: a systematic review. Journal of Clinical Periodontology, 40(4), 334-344. http://dx.doi.org/10.1111/jcpe.12058. PMid:23405962.

21. Darvell, B. W., & Wu, R. C. T. (2011). “MTA”-an Hydraulic Silicate Cement: review update and setting reaction. Dental Materials, 27(5), 407-422. http://dx.doi.org/10.1016/j.dental.2011.02.001. PMid:21353694.

22. Hurt, A. P., Getti, G., & Coleman, N. J. (2014). Bioactivity and biocompatibility of a chitosan-tobermorite composite membrane for guided tissue regeneration. International Journal of Biological Macromolecules, 64, 11-16. http://dx.doi.org/10.1016/j.ijbiomac.2013.11.020. PMid:24296410.

23. Kokubo, T., & Takadama, H. (2006). How useful is SBF in predicting in vivo bone bioactivity? Biomaterials, 27(15), 2907-2915. http://dx.doi.org/10.1016/j.biomaterials.2006.01.017. PMid:16448693.

24. Grangeon, S., Claret, F., Linard, Y., & Chiaberge, C. (2013). X-ray diffraction: a powerful tool to probe and understand the structure of nanocrystalline calcium silicate hydrates. Acta Crystallographica. Section B, Structural Crystallography and Crystal Chemistry, B69(Pt 5), 465-473. http://dx.doi.org/10.1107/S2052519213021155. PMid:24056355.

25. Lee, E.-J., Shin, D.-S., Kim, H.-E., Kim, H.-W., Koh, Y.-H., & Jang, J.-H. (2009). Membrane of hybrid chitosan-silica xerogel for guided bone regeneration. Biomaterials, 30(5), 743-750. http://dx.doi.org/10.1016/j.biomaterials.2008.10.025. PMid:19027950.

26. Souto, R., Andrade, A. F. B., Uzeda, M., & Colombo, A. P. V. (2006). Prevalence of “non-oral” pathogenic bacteria in subgingival biofilm of subjects with chronic periodontitis. Brazilian Journal of Microbiology, 37(3), 208-215. http://dx.doi.org/10.1590/S1517-83822006000300002.

27. Silva-Boghossian, C. M., do Souto, R. M., Luiz, R. R., & Colombo, A. P. V. (2011). Association of red complex, A. actinomycetemcomitans and non-oral bacteria with periodontal diseases. Archives of Oral Biology, 56(9), 899-906. http://dx.doi.org/10.1016/j.archoralbio.2011.02.009. PMid:21397893.

28. Pye, A. D., Lockhart, D. E. A., Dawson, M. P., Murray, C. A., & Smith, A. J. (2009). A review of dental implants and infection. The Journal of Hospital Infection, 72(2), 104-110. http://dx.doi.org/10.1016/j.jhin.2009.02.010. PMid:19329223.

29. Ribeiro, M., Monteiro, F. J., & Ferraz, M. P. (2012). Infection of orthopedic implants with emphasis on bacterial adhesion process and techniques used in studying bacterial-material interactions. Biomatter, 2(4), 176-194. http://dx.doi.org/10.4161/biom.22905. PMid:23507884.

30. Rhim, J.-W., Hong, S.-I., Park, H.-M., & Ng, P. K. W. (2006). Preparation and characterization of chitosan-based nanocomposite films with antimicrobial activity. Journal of Agricultural and Food Chemistry, 54(16), 5814-5822. http://dx.doi.org/10.1021/jf060658h. PMid:16881682.

31. Pishbin, F., Mouriño, V., Gilchrist, J. B., McComb, D. W., Kreppel, S., Salih, V., Ryan, M. P., & Boccaccini, A. R. (2013). Single-step electrochemical deposition of antimicrobial orthopaedic coatings based on a bioactive glass/chitosan/nano-silver composite system. Acta Biomaterialia, 9(7), 7469-7479. http://dx.doi.org/10.1016/j.actbio.2013.03.006. PMid:23511807.

32. Hardes, J., Streitburger, A., Ahrens, H., Nusselt, T., Gebert, C., Winkelmann, W., Battmann, A., & Gosheger, G. (2007). The influence of elementary silver versus titanium on osteoblasts behaviour in vitro using human osteosarcoma cell lines. Sarcoma. 2007 (Article ID 26539), 1-5. http://dx.doi.org/10.1155/2007/26539.

33. Han, P. P., Wu, C. T., & Xiao, Y. (2013). The effect of silicate ions on proliferation, osteogenic differentiation and cell signalling pathways (WNT and SHH) of bone marrow stromal cells. Biomaterials Science, 1(4), 379-392. http://dx.doi.org/10.1039/C2BM00108J.

34. Arcos, D., & Vallet-Regí, M. (2010). Sol-gel silica-based biomaterials and bone tissue regeneration. Acta Biomaterialia, 6(8), 2874-2888. http://dx.doi.org/10.1016/j.actbio.2010.02.012. PMid:20152946.
588371c27f8c9d0a0c8b4a53 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections