Polímeros: Ciência e Tecnologia
Polímeros: Ciência e Tecnologia
Scientific & Technical Article

Wear and friction of composites of an epoxy with boron containing wastes

Uygunoğlu, Tayfun; Brostow, Witold; Gunes, Ibrahim

Downloads: 0
Views: 633


Polymer surface coatings provide superior adhesion to substrates, some flexibility and corrosion resistance. On the other hand, 400,000 ton of boron wastes are generated each year. We have developed polymer composites based on epoxy resins containing up to 50 wt. % of boron wastes and determined their pin-on-disk dynamic friction, wear, Shore D hardness and surface roughness. The hardness and wear resistance increase with increasing boron waste concentration. An equation, with parameters dependent on the load, relating wear rate to hardness is provided. Dynamic friction increases with increasing surface roughness, as represented by the equation. Further, dynamic friction is an increasing function of the wear rate. Micrographs of pure epoxy without fillers shows traces after pin-on-disk testing, with tears, breaks and cracks. For the composites, we observe simpler and relatively homogeneous surfaces.


boron-containing waste, epoxy composites, abrasive wear, dynamic friction, shore hardness, roughness.


1. Kavas, T., Christogerou, A., Pontikes, Y., & Angelopoulos, G. N. (2011). Valorisation of different types of boron-containing wastes for the production of lightweight aggregates. Journal of Hazardous Materials, 185(2-3), 1381-1389. http://dx.doi.org/10.1016/j.jhazmat.2010.10.059. PMid:21075514.

2. Kurama, S., Kara, A., & Kurama, H. (2006). The effect of boron waste in phase and microstructural development of a terracotta body during firing. Journal of the European Ceramic Society, 26(4-5), 755-760. http://dx.doi.org/10.1016/j.jeurceramsoc.2005.07.039.

3. Özdemir, M., & Öztürk, N. U. (2003). Utilization of clay wastes containing boron as cement additives. Cement and Concrete Research, 33(10), 1659-1661. http://dx.doi.org/10.1016/S0008-8846(03)00138-8.

4. Brostow, W., Dutta, M., & Rusek, P. (2010). Modified epoxy coatings on mild steel: tribology and surface energy. European Polymer Journal, 46(11), 2181-2189. http://dx.doi.org/10.1016/j.eurpolymj.2010.08.006.

5. Bilyeu, B., Brostow, W., & Menard, K. P. (2001). Determination of volume changes during cure via void elimination and shrinkage of an epoxy prepreg using a quartz dilatometry cell. Polimery, 46(11-12), 799-802. Retrieved from http://ichp.pl/attach.php?id=2849

6. Bilyeu, B., Brostow, W., & Menard, K. P. (2001). Epoxy thermosets and their applications. III. Kinetic equations and models. Journal of Materials Education, 23(4-6), 189-204. Retrieved from http://www.unt.edu/LAPOM/publications/pdf%20articles/Lisa/epoxyJME3.pdf

7. Jang, B. Z. (1994). Advanced polymer composites: principles and applications. Ohio: Metals Park/ASM International.

8. Kim, J., Kang, P. H., & Nho, Y. C. (2004). Positive temperature coefficient behavior of polymer composites having a high melting temperature. Journal of Applied Polymer Science, 92(1), 394-401. http://dx.doi.org/10.1002/app.20064.

9. Harsha, A. P. (2011). An investigation on low stress abrasive wear characteristics of high performance engineering thermoplastic polymers. Wear, 271(5-6), 942-951. http://dx.doi.org/10.1016/j.wear.2011.03.019.

10. Shipway, P. H., & Ngao, N. K. (2003). Microscale abrasive wear of polymeric materials. Wear, 255(1-6), 742-750. http://dx.doi.org/10.1016/S0043-1648(03)00106-6.

11. Cayer-Barrioz, J., Mazuyer, D., Kapsa, Ph., Chateauminois, A., & Robert, G. (2004). Abrasive wear micromechanisms of oriented polymers. Polymer, 45(8), 2729-2736. http://dx.doi.org/10.1016/j.polymer.2004.02.013.

12. Ginzburg, B. M., Tochil’nikov, D. G., Bakhareva, V. E., Anisimov, A. V., & Kireenko, O. F. (2006). Polymeric materials for water-lubricated plain bearings. Russian Journal of Applied Chemistry, 79(5), 695-706. http://dx.doi.org/10.1134/S1070427206050016.

13. Gunes, I., Uygunoglu, T., Ergen, A., Kısıkcılar, T., & Aksoy, E. (2015). Investigation of wear behavior of borided DIN 20MoCr4 steel. El-Cezerî Journal of Science and Engineering, 2, 53-58. Retrieved from http://ecjse.com/index.php/ECJSE/article/view/53

14. Samyn, P., Schoukens, G., Quintelier, J., & De Baets, P. (2006). Friction, wear and material transfer of sintered polyimides sliding against various steel and diamond-like carbon coated surfaces. Tribology International, 39(6), 575-589. http://dx.doi.org/10.1016/j.triboint.2005.07.029.

15. Cirino, M., Friedrich, K., & Pipes, R. B. (1988). Evaluation of Polymer Composites for Sliding and Abrasive Wear Applications. Composites, 19(5), 383-392. http://dx.doi.org/10.1016/0010-4361(88)90126-7.

16. Cirino, M., Pipes, R. B., & Friedrich, K. (1987). The abrasive wear behaviour of continuous ibre polymer composites. Journal of Materials Science, 22(7), 2481-2492. http://dx.doi.org/10.1007/BF01082134.

17. Cirino, M., Friedrich, K., & Pipes, R. B. (1988). The effect of fiber orientation on the abrasive wear behavior of polymer composite materials. Wear, 121(2), 127-141. http://dx.doi.org/10.1016/0043-1648(88)90038-5.

18. Zhao, G., Hussainova, I., Antonov, M., Wang, Q., & Wang, T. (2013). Friction and wear of fiber reinforced polyimide composites. Wear, 301(1-2), 122-129. http://dx.doi.org/10.1016/j.wear.2012.12.019.

19. Rao, M., Hooke, C. J., Kukureka, S. N., Liao, P., & Chen, Y. K. (1998). The effect of PTFE on the friction and wear behaviour of polymers in rolling-sliding contact. Polymer Engineering and Science, 38(12), 1946-1958. http://dx.doi.org/10.1002/pen.10364.

20. Pihtili, H. (2009). An Experimental Investigation of Wear of Glass Fibre-Epoxy Resin and Glass Fibre-Polyester Resin Composite Materials. European Polymer Journal, 45(1), 149-154. http://dx.doi.org/10.1016/j.eurpolymj.2008.10.006.

21. Svancarek, P., Lendvayova, S., Galusek, D., Hnatko, M., Vavra, I., & Wang, X. (2011). Abrasive wear resistance of SiO2-doped polycrystalline alumina. Wear, 271(5-6), 760-769. http://dx.doi.org/10.1016/j.wear.2011.03.016.

22. Brostow, W., Kovacevic, V., Vrsaljko, D., & Whitworth, J. (2010). Tribology of polymer and polymer-based composites. Journal of Materials Education, 32(5-6), 273-290.

23. Brostow, W., Kumar, P., Vrsaljko, D., & Whitworth, J. (2011). Optimization of tribological and mechanical properties of nanocomposites of polyurethane/poly(vinyl acetate)/CaCO3. Journal of Nanoscience and Nanotechnology, 11(5), 3922-3928. http://dx.doi.org/10.1166/jnn.2011.3849. PMid:21780387.

24. Olea-Mejía, O., Brostow, W., Escobar-Alarcón, L., & Vigueras-Santiago, E. (2012). Tribological properties of polymer nanohybrids containing gold nanoparticles obtained by laser ablation. Journal of Nanoscience and Nanotechnology, 12(3), 2750-2755. http://dx.doi.org/10.1166/jnn.2012.5737. PMid:22755118.

25. Brostow, W., Datashvili, T., & Geodakyan, J. (2012). Tribological properties of ethylene–propylene–diene rubber + polypropylene + thermal-shock-resistant ceramic composites. Polymer International, 61(9), 1362-1370. http://dx.doi.org/10.1002/pi.4282.
588371c17f8c9d0a0c8b4a4e polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections