Polímeros: Ciência e Tecnologia
https://www.revistapolimeros.org.br/article/doi/10.1590/0104-1428.1761
Polímeros: Ciência e Tecnologia
Scientific & Technical Article

Pirólise catalítica do PEBD usando como catalisador a vermiculita modificada

Catalytic pyrolysis of LDPE using modified vermiculite as a catalyst

Bezerra, Franciel Aureliano; Figueiredo, Aneliése Lunguinho; Araujo, Antonio Souza de; Guedes, Ana Paula de Melo Alves

Downloads: 0
Views: 1236

Resumo

O polietileno de baixa densidade (PEBD) é um dos polímeros mais usados atualmente, e a grande quantidade desse polímero produzida resulta em toneladas de resíduos, que necessitam ser tratados. Neste trabalho foi realizada a pirólise termocatalítica do PEBD usando como catalisador a argila vermiculita modificada, como alternativa para o tratamento dos resíduos. A argila foi tratada com solução de ácido nítrico a diferentes concentrações e calcinada a 400 °C. Os materiais foram caracterizados por técnicas de difratometria de raios X, termogravimetria, adsorção de nitrogênio e espectroscopia de energia dispersiva. A pirólise térmica e termocatalítica foi realizada em um micro reator acoplado com GC/MS, a 500 °C. O intuito da pirólise de resíduos poliméricos é a obtenção de hidrocarbonetos leves (C<16), que possam ser empregados na indústria química e petroquímica, através de quebras na cadeia polimérica. Os resultados foram satisfatórios, com aumento no rendimento para hidrocarbonetos leves ao empregar os catalisadores chegando a 71,4% de produtos com C<16, enquanto a pirólise térmica resultou apenas de 25,8%.

Palavras-chave

vermiculita, argila, pirólise, PEBD.

Abstract

Low density polyethylene (LDPE) is one of the most commonly-used polymers currently, and the great quantity of this polymer produced results in tons of waste that must be treated. We studied the thermocatalytic pyrolysis of LDPE with a modified clay vermiculite catalyst as an alternative for treatment of waste. The clay was treated with a solution of nitric acid at different concentrations and calcined at 400 °C. The materials were characterized by X-ray diffraction, thermogravimetry, nitrogen adsorption, and energy dispersive spectroscopy. Thermal and thermocatalytic pyrolysis were carried out in a microreactor coupled with GC/MS at 500 °C. The aim of the polymeric waste pyrolysis is the obtainment of light hydrocarbons (C<16), which can be used in the chemical and petrochemical industry, through breaks in the polymer chain. The results were satisfactory, with an increase in yield for light hydrocarbons by using catalysts reaching up to 71.4% of products with C<16, whereas thermal pyrolysis resulted in only 25.8%.

Keywords

vermiculite, clay, pyrolysis, LDPE.

References

1. Coutinho, F. M. B., Mello, I. L., & Santa Maria, L. C. (2003). Polietileno: Principais tipos, propriedades e aplicações. Polímeros. Ciência e Tecnologia, 13(1), 1-13. http://dx.doi.org/10.1590/S0104-14282003000100005.

2. Associação Brasileira da Indústria do Plástico – ABIPLAST. (2011). Perfil 2011: indústria brasileira de transformação de material plástico. São Paulo. Recuperado em 5 de maio de 2014, de http://file.abiplast.org.br/download/estatistica/perfil2012_versao_eletronica.pdf

3. Panda, A. K., & Singh, R. K. (2011). Catalytic performances of kaoline and silica alumina in the thermal degradation of polypropylene. Journal of Fuel Chemistry and Technology, 39(3), 198-202. http://dx.doi.org/10.1016/S1872-5813(11)60017-0.

4. López, A., Marco, I., Caballero, B. M., Laresgoiti, M. F., Adrados, A., & Aranzabal, A. (2011). Catalytic pyrolysis of plastic wastes with two different types of catalysts: ZSM-5 zeolite and Red Mud. Applied Catalysis B: Environmental, 104(3-4), 211-219. http://dx.doi.org/10.1016/j.apcatb.2011.03.030.

5. Coelho, A., Costa, L., Marques, M. M., Fonseca, I. M., Lemos, M. A. N. D. A., & Lemos, F. (2012). The effect of ZSM-5 zeolite acidity on the catalytic degradation of high-density polyethylene using simultaneous DSC/TG analysis. Applied Catalysis A, General, 413-414, 183-191. http://dx.doi.org/10.1016/j.apcata.2011.11.010.

6. Jin, S., Cui, K., Guan, H., Yang, M., Liu, L., & Lan, C. (2012). Preparation of mesoporous MCM-41 from natural sepiolite and its catalytic activity of cracking waste polystyrene plastics. Applied Clay Science, 56, 1-6. http://dx.doi.org/10.1016/j.clay.2011.11.012.

7. Araújo, A. S., Fernandes, V. J. Jr, Araujo, S. A., & Ionashiro, M. (2002). Kinetic evaluation of the pyrolysis of high density polyethylene over H-AlMCM-41 material. Studies in Surface Science and Catalysis, 141, 473-478. http://dx.doi.org/10.1016/S0167-2991(02)80578-X.

8. Singhal, R., Shinghal, C., & Upadhyayula, S. (2010). Thermal-catalytic degradation of polyethylene over silicoaluminophosphate molecular sieves – A thermogravimetric study. Journal of Analytical and Applied Pyrolysis, 89(2), 313-317. http://dx.doi.org/10.1016/j.jaap.2010.09.007.

9. Fernandes, G. J. T., Fernandes, V. J. Jr, & Araújo, A. S. (2002). Catalytic degradation of polyethylene over SAPO-37 molecular sieve. Catalysis Today, 75(1-4), 233-238. http://dx.doi.org/10.1016/S0920-5861(02)00074-3.

10. Adrados, A., Marco, I., Caballero, B. M., López, A., Laresgoiti, M. F., & Torres, A. (2012). Pyrolysis of plastic packaging waste: A comparation of plastic residuals from material recovery facilities with simulated plastic waste. Waste Management, 32(5), 826-832. http://dx.doi.org/10.1016/j.wasman.2011.06.016. PMid:21795037.

11. Stefanis, A., Cafarelli, P., Gallese, F., Borsella, E., Nana, A., & Perez, G. (2013). Catalytic pyrolysis of polyethylene: A comparation between pillared and restructured clays. Journal of Analytical and Applied Pyrolysis, 104, 479-484. http://dx.doi.org/10.1016/j.jaap.2013.05.023.

12. Okada, K., Arimitsu, N., Kameshima, Y., Nakajima, A., & MacKenzie, K. J. D. (2006). Solid acidity of 2:1 type clay minerals activated by selective leaching. Applied Clay Science, 31(3-4), 185-193. http://dx.doi.org/10.1016/j.clay.2005.10.014.

13. Shimizu, K., Higuchi, T., Takasugi, E., Hatamachi, T., Kodama, T., & Satsuma, A. (2008). Characterization of Lewis acidity of cation-exchanged montmorillonite K-10 clay as effective heterogeneous catalyst for acetylation of alcohol. Journal of Molecular Catalysis A Chemical, 284(1-2), 89-96. http://dx.doi.org/10.1016/j.molcata.2008.01.013.

14. Melo, D. M. A., Ruiz, J. A. C., Sobrinho, E. V., Melo, M. A. F., Martinelli, A. E., & Zinner, L. B. (2003). Determination of relative acid strength of La/paligorskyte by n-butylamine. Journal of Solid State Chemistry, 171(1-2), 217-220. http://dx.doi.org/10.1016/S0022-4596(02)00154-8.

15. Gil, A., Vicente, M. A., & Korili, S. A. (2005). Effect of the Si/Al ratio on the structure and surface properties of silica-alumina-pillared clays. Journal of Catalysis, 229(1), 119-126. http://dx.doi.org/10.1016/j.jcat.2004.10.013.

16. Hart, M. P., & Brown, D. R. (2004). Surface acidities and catalytic activities of acid-activated clays. Journal of Molecular Catalysis A Chemical, 212(1-2), 315-321. http://dx.doi.org/10.1016/j.molcata.2003.11.013.

17. Sasca, V., Avram, L., Verdes, O., & Popa, A. (2010). The n-butyl amine TPD measurement of Brönsted acidity for solid catalysts by simultaneous TG/DTG-DTA. Applied Surface Science, 256(17), 5533-5538. http://dx.doi.org/10.1016/j.apsusc.2009.12.131.

18. Temuujin, J., Okada, K., & Mackenzie, K. J. D. (2003). Preparation of porous silica from vermiculite by selective leaching. Applied Clay Science, 22(4), 187-195. http://dx.doi.org/10.1016/S0169-1317(02)00158-8.

19. Campos, A. M., Moreno, S., & Molina, R. (2008). Relationship between hydrothermal treatment parameters as a strategy to reduce layer charge in vermiculite, and its catalytic behavior. Catalysis Today, 133-135, 351-356. http://dx.doi.org/10.1016/j.cattod.2007.12.110.

20. Perez-Maqueda, L. A., Maqueda, C., Perez-Rodriguez, J. L., Subrt, J., Cerny, Z., & Balek, V. (2012). Thermal behaviour of ground and unground acid leached vermiculite. Journal of Thermal Analysis and Calorimetry, 107(2), 431-438. http://dx.doi.org/10.1007/s10973-011-1480-2.

21. Perez-Maqueda, J. L., Maqueda, C., Murafa, N., Subrt, J., Balek, V., Pulisová, P., & Lancok, A. (2011). Study of ground and unground leached vermiculite II. Thermal behaviour of ground acid-treated vermiculite. Applied Clay Science, 51(3), 274-282. http://dx.doi.org/10.1016/j.clay.2010.11.031.

22. Komadel, P., & Madejová, J. (2006). Acid activation of clay minerals. In F. Bergaya, B. K. G. Theng & G. Lagaly (Eds.). Handbook of clay science (Developments in Clay Science, Vol. 1, pp. 263-287).

23. Moreno, E. L., & Rajagopal, K. (2009). Desafios da acidez na catálise em estado sólido. Quimica Nova, 32(2), 538-542. http://dx.doi.org/10.1590/S0100-40422009000200044.

24. Angaji, M. T., Zinali, A. Z., & Qazvini, N. T. (2013). Study of Physical, Chemical and Morphological Alterations os Smectite Clay upon Activation and Funcionalization via the Acid treatment. World Journal of Nano Science and Engineering, 3(04), 161-168. http://dx.doi.org/10.4236/wjnse.2013.34019.

25. Agência Nacional do Petróleo, Gás Natural e Biocombustíveis – ANP. (2013). Evolução do mercado de combustíveis e derivados: 2000-2012. Brasília. Recuperado em 5 de maio de 2014, de http://www.anp.gov.br/?dw=64307
588371cf7f8c9d0a0c8b4a8b polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections