Polímeros: Ciência e Tecnologia
https://www.revistapolimeros.org.br/article/doi/10.1590/0104-1428.1722
Polímeros: Ciência e Tecnologia
Review Article

Vegetal fibers in polymeric composites: a review

Pereira, Paulo Henrique Fernandes; Freitas, Morsyleide de Freitas; Cioffi, Maria O. H.; Benini, Kelly Cristina Coelho de Carvalho; Milanese, Andressa Cecília; Voorwald, Herman C. J.; Mulinari, Daniela Regina

Downloads: 1
Views: 1821

Abstract

The need to develop and commercialize materials containing vegetal fibers has grown in order to reduce environmental impact and reach sustainability. Large amounts of lignocellulosic materials are generated around the world from several human activities. The lignocellulosic materials are composed of cellulose, hemicellulose, lignin, extractives and ashes. Recently these constituents have been used in different applications; in particular, cellulose has been the subject of numerous works on the development of composite materials reinforced with natural fibers. Many studies have led to composite materials reinforced with fibers to improve the mechanical, physical, and thermal properties. Furthermore, lignocellulosic materials have been treated to apply in innovative solutions for efficient and sustainable systems. This paper aims to review the lignocellulosic fibers characteristics, as well as to present their applications as reinforcement in composites of different polymeric matrices.

Keywords

thermoplastic composite, thermoset composite, lignocellulosic residues.

References

1. Li, W. Y., Jin, A. X., Liu, C. F., Sun, R. C., Zhang, A. P., & Kennedy, J. F. (2009). Homogeneous modification of cellulose with succinic anhydride in ionic liquid using 4-dimethylaminopyridine as a catalyst. Carbohydrate Polymers, 78(3), 389-395. http://dx.doi.org/10.1016/j.carbpol.2009.04.028.

2. Belgacem, M. N., & Gandini, A. (2011). Monomers, polymers and composites from renewable resources. Oxford: Elsevier.

3. Mohanty, A. K., Misra, M., & Drzal, L. T. (2005). Natural fibers, biopolymers, and biocomposites. Boca Raton: CRC Press. http://dx.doi.org/10.1201/9780203508206.

4. Wallenberger, F. T., & Weston, N. (2004). Natural fibers, plastics and composites. Boston: Kluwer Academic Publishers. http://dx.doi.org/10.1007/978-1-4419-9050-1.

5. Ogeda, T. L., & Petri, D. F. S. (2010). Hidrólise enzimática de biomassa. Química Nova, 33(7), 1549-1558. http://dx.doi.org/10.1590/S0100-40422010000700023.

6. Faruk, O., Bledzki, A. K., Fink, H. P., & Sain, M. (2014). Progress report on natural fiber reinforced composites. Macromolecular Materials and Engineering, 299(1), 9-26. http://dx.doi.org/10.1002/mame.201300008.

7. Klemm, D., Heublein, B., Fink, H. P., & Bohn, A. (2005). Cellulose: fascinating biopolymer and sustainable raw material. Angewandte Chemie International Edition, 44, 3358-3393.

8. Tasker, S., Badyal, J. P. S., Backson, S. C. E., & Richards, R. W. (1994). Hydroxyl accessibility in celluloses. Polymer, 35(22), 4717-4721. http://dx.doi.org/10.1016/0032-3861(94)90723-4.

9. Abdul Khalil, H. P. S., Bhat, A. H., & Ireana Yusra, A. F. (2012). Green composites from sustainable cellulose nanofibrils: a review. Carbohydrate Polymers, 87(2), 963-979. http://dx.doi.org/10.1016/j.carbpol.2011.08.078.

10. Silva, R., Haraguchi, S. K., Muniz, E. C., & Rubira, A. F. (2009). Aplicações de fibras lignocelulósicas na química de polímeros e em compósitos. Química Nova, 32(3), 661-671. http://dx.doi.org/10.1590/S0100-40422009000300010.

11. Pietak, A., Korte, S., Tan, E., Downard, A., & Staiger, M. P. (2007). Atomic force microscopy characterization of the surface wettability of natural fibres. Applied Surface Science, 253(7), 3627-3635. http://dx.doi.org/10.1016/j.apsusc.2006.07.082.

12. Carvalho, W., Canilha, L., Ferraz, A., & Milagres, A. M. F. (2009). Uma visão sobre a estrutura, composição e biodegradação da madeira. Química Nova, 32(8), 2191-2195. http://dx.doi.org/10.1590/S0100-40422009000800033.

13. Harries, H. C. (1978). The evolution, dissemination and classification of Cocos nucifera. Botanical Review, 44(3), 265-319.

14. Satyanarayana, K. G., Pillai, C. K. S., Sukumaran, K., Pillai, S. G. K., Rohatgi, P. K., & Vijayan, K. (1982). Structure property studies of fibres from various parts of the coconut tree. Journal of Materials Science, 17(8), 2453-2462. http://dx.doi.org/10.1007/BF00543759.

15. Geethamma, V. G., Thomas Mathew, K. T., Lakshminarayanan, R., & Thomas, S. (1998). Composite of short coir fibres and natural rubber: effect of chemical modification, loading and orientation of fibre. Polymer, 39(6-7), 1483-1491. http://dx.doi.org/10.1016/S0032-3861(97)00422-9.

16. Mukherjee, P. S., & Satyanarayana, K. G. J. (1986). An empirical evaluation of structure-property relationships in natural fibres and their fracture behaviour. Materials Science, 21(12), 4162-4168. http://dx.doi.org/10.1007/BF01106524.

17. Mahato, D. N., Mathur, B. K., & Bhattacherjee, S. J. (1993). Effects of alkali treatment on electrical and spectral properties of coir fibre. Journal of Materials Science Letters, 12(17), 1350. http://dx.doi.org/10.1007/BF00241705.

18. Rowell, R. M., Han, J. S., & Rowell, J. S. (2000). Characterization and factors affecting fiber properties. In E. Frollini, A. Leão, & L. H. C. Mattoso (Eds.), Natural polymers and agrofibers composites (pp. 115-134). São Carlos: USP.

19. Silva, G. G., De Souza, D. A., Machado, J. C., & Hourston, D. J. (2000). Mechanical and thermal characterization of native brazilian coir fiber. Journal of Applied Polymer Science, 76(7), 1197-1206. http://dx.doi.org/10.1002/(SICI)1097-4628(20000516)76:7<1197::AID-APP23>3.0.CO;2-G.

20. Martins, G. S., Iozzi, M. A., Martins, M. A., Mattoso, L. H. C., & Ferreira, F. C. (2004). Caracterização mecânica e térmica de compósitos de poli (cloreto de vinila) reforçados com fibras de sisal. Polímeros: Ciência e Tecnologia, 14(5), 326-333. http://dx.doi.org/10.1590/S0104-14282004000500010.

21. Tomczak, F., Sydenstricker, T. H. D., & Satyanarayana, K. G. (2007). Studies on lignocellulosic fibers of Brazil. Part II: Morphology and properties of Brazilian coconut fibers. Composites Part A: Applied Science and Manufacturing, 38(7), 1710-1721. http://dx.doi.org/10.1016/j.compositesa.2007.02.004.

22. Corradini, E., Ito, E. N., Marconcini, J. M., Rios, C. T., Agnelli, J. A. M., & Mattoso, L. H. C. (2009). Interfacial behavior of composites of recycled poly(ethyelene terephthalate) and sugarcane bagasse fiber. Polymer Testing, 28(2), 183-187. http://dx.doi.org/10.1016/j.polymertesting.2008.11.014.

23. Hattalli, S., Benaboura, A., Ham-Pichavant, F., Nourmamode, A., & Castellan, A. (2002). Adding value to Alfa grass (Stipa tenacissima L.) soda lignin as phenolic resins 1. Lignin characterization. Polymer Degradation & Stability, 76(2), 259-264. http://dx.doi.org/10.1016/S0141-3910(02)00022-8.

24. Leão, A. L., Rowell, R., & Tavares, N. (1998). Applications of natural fibers in automotive industry in Brazil. In P. N. Prasad, J. E. Mark, S. H. Kandil, & Z. H. Kaifi (Eds.), Science and technology of polymers and advanced materials (pp. 755-761). New York: Plenum Press.

25. Satyanarayana, K. G., Ravikumar, K. K., Sukumaran, K., Mukherjee, P. S., Pillai, S. G. K., & Kulkarni, A. G. (1986). Structure and properties of some vegetable fibres. Journal of Materials Science, 21(1), 57-63. http://dx.doi.org/10.1007/BF01144699.

26. Majeed, K., Jawaid, M., Hassan, A., Abu Bakar, A., Abdul Khalil, H. P. S., Salema, A. A., & Inuwa, I. (2013). Potential materials for food packaging from nanoclay/natural fibres filled hybrid composites. Materials & Design, 46, 391-410. http://dx.doi.org/10.1016/j.matdes.2012.10.044.

27. Dicker, M. P. M., Duckworth, P. F., Baker, A. B., Francois, G., Hazzard, M. K., & Weaver, P. M. (2014). Green composites: A review of material attributes and complementary applications. Composites Part A: Applied Science and Manufacturing, 56, 280-289. http://dx.doi.org/10.1016/j.compositesa.2013.10.014.

28. Sarikanat, M., Seki, Y., Sever, K., & Durmuşkahya, C. (2014). Determination of properties of Althaea officinalis L. (Marshmallow) fibres as a potential plant fibre in polymeric composite materials. Composites Part B: Engineering, 57, 180-186. http://dx.doi.org/10.1016/j.compositesb.2013.09.041.

29. Saha, P., Manna, S., Chowdhury, S. R., Sen, R., Roy, D., & Adhikari, B. (2010). Enhancement of tensile strength of lignocellulosic jute fibers by alkali-steam treatment. Bioresource Technology, 101(9), 3182-3187. http://dx.doi.org/10.1016/j.biortech.2009.12.010. PMid:20074944

30. Satyanarayana, K. G., Guimarães, J. L., & Wypych, F. (2007). Studies on lignocellulosic fibers of Brazil. Part I: source, production, morphology, properties and applications. Composites Part A: Applied Science and Manufacturing, 38(7), 1694-1709. http://dx.doi.org/10.1016/j.compositesa.2007.02.006.

31. Li, X., He, L., Zhou, H., Li, W., & Zha, W. (2012). Influence of silicone oil modification on properties of ramie fiber reinforced polypropylene composites. Carbohydrate Polymers, 87(3), 2000-2004. http://dx.doi.org/10.1016/j.carbpol.2011.10.023.

32. Faruk, O., Bledzki, A. K., Fink, H. P., & Sain, M. (2012). Biocomposites reinforced with natural fibers: 2000–2010. Progress in Polymer Science, 37(11), 1552-1596. http://dx.doi.org/10.1016/j.progpolymsci.2012.04.003.

33. Karimi, S., Tahir, P. M., Karimi, A., Dufresne, A., & Abdulkhani, A. (2014). Kenaf bast cellulosic fibers hierarchy: a comprehensive approach from micro to nano. Carbohydrate Polymers, 101, 878-885. http://dx.doi.org/10.1016/j.carbpol.2013.09.106. PMid:24299851

34. Le Moigne, N., Longerey, M., Taulemesse, J. M., Bénézet, J. C., & Bergeret, A. (2014). Study of the interface in natural fibres reinforced poly(lactic acid) biocomposites modified by optimized organosilane treatments. Industrial Crops and Products, 52, 481-494. http://dx.doi.org/10.1016/j.indcrop.2013.11.022.

35. Tserki, V., Zafeiropoulos, N. E., Simon, F., & Panayiotou, C. (2005). A study of the effect of acetylation and propionylation surface treatments on natural fibres. Composites Part A: Applied Science and Manufacturing, 36(8), 1110-1118. http://dx.doi.org/10.1016/j.compositesa.2005.01.004.

36. Azwa, Z. N., Yousif, B. F., Manalo, A. C., & Karunasena, W. (2013). A review on the degradability of polymeric composites based on natural fibres. Materials & Design, 47, 424-442. http://dx.doi.org/10.1016/j.matdes.2012.11.025.

37. Ratna Prasad, A. V., & Rao, K. M. (2011). Mechanical properties of natural fibre reinforced polyester composites: Jowar, sisal and bamboo. Materials & Design, 32(8-9), 4658-4663. http://dx.doi.org/10.1016/j.matdes.2011.03.015.

38. Guimarães, J. L., Frollini, E., Da Silva, C. G., Wypych, F., & Satyanarayana, K. G. (2009). Characterization of banana, sugarcane bagasse and sponge gourd fibers of Brazil. Crops and Products, 30(3), 407-415. http://dx.doi.org/10.1016/j.indcrop.2009.07.013.

39. Liu, K., Takagi, H., Osugi, R., & Yang, Z. (2012). Effect of physicochemical structure of natural fiber on transverse thermal conductivity of unidirectional abaca/bamboo fiber composites. Composites Part A: Applied Science and Manufacturing, 43(8), 1234-1241. http://dx.doi.org/10.1016/j.compositesa.2012.02.020.

40. Habibi, Y., El-Zawawy, W. K., Ibrahim, M. M., & Dufresne, A. (2008). Processing and characterization of reinforced polyethylene composites made with lignocellulosic fibers from Egyptian agro-industrial residues. Composites Science and Technology, 68(7-8), 1877-1885. http://dx.doi.org/10.1016/j.compscitech.2008.01.008.

41. Sipião, B. L. L., Paiva, R. L. M., Goulart, S. A. S., & Mulinari, D. R. (2011). Effect of chemical modification on mechanical behaviour of polypropylene reinforced pineapple crown fibers composites. Procedia Engineering, 10, 2028-2033. http://dx.doi.org/10.1016/j.proeng.2011.04.336.

42. Hoareau, W., Trindade, W. G., Siegmund, B., Castellan, A., & Frollini, E. (2004). Sugar cane bagasse and curaua lignins oxidized by chlorine dioxide and reacted with furfuryl alcohol: characterization and stability. Polymer Degradation & Stability, 86(3), 567-576. http://dx.doi.org/10.1016/j.polymdegradstab.2004.07.005.

43. D’Almedia, J. R. M., Aquino, R. C. M. P., & Monteiro, S. N. (2006). Tensile mechanical properties, morphological aspects and chemical characterization of piassava (Attalea funifera) fibers. Composites Part A: Applied Science and Manufacturing, 37(9), 1473-1479. http://dx.doi.org/10.1016/j.compositesa.2005.03.035.

44. Wang, J., Zheng, Y., & Wang, A. (2012). Effect of kapok fiber treated with various solvents on oil absorbency. Industrial Crops and Products, 40, 178-184. http://dx.doi.org/10.1016/j.indcrop.2012.03.002.

45. Tye, Y. Y., Lee, K. T., Wan Abdullah, W. N., & Leh, C. P. (2013). Potential of Ceiba pentandra (L.) Gaertn. (kapok) fiber as a resource for second generation bioethanol: parametric optimization and comparative study of various pretreatments prior enzymatic saccharification for sugar production. Bioresource Technology, 140, 10-14. http://dx.doi.org/10.1016/j.biortech.2013.04.069. PMid:23672935

46. Elizalde-González, M. P., & Hernández-Montoya, V. (2007). Characterization of adsorbent materials prepared from avocado kernel seeds: natural, activated and carbonized forms. Biochemical Engineering Journal, 36, 230-238.

47. Henrique, M. A., Silvério, H. A., Flauzino Neto, W. P., & Pasquini, D. (2013). Valorization of an agro-industrial waste, mango seed, by the extraction and characterization of its cellulose nanocrystals. Journal of Environmental Management, 121, 202-209. http://dx.doi.org/10.1016/j.jenvman.2013.02.054. PMid:23542530

48. Almeida, J. M. R., Boynard, C. A., & Monteiro, S. N. (2000). Effect of chemical treatments on the surface morphology of sponge gourd (Luffa cylindrica) fibers. In Proceedings from 3rd International Symposium on Natural Polymers and Composites – ISNaPol (pp. 27). São Pedro: Embrapa Instrumentação Agropecuária.

49. Tanobe, V. O. A., Sydenstricker, T. H. D., Munaro, M., & Amico, S. C. A. (2005). A comprehensive characterization of chemically treated Brazilian sponge-gourds (Luffa cylindrica). Polymer Testing, 24(4), 474-482. http://dx.doi.org/10.1016/j.polymertesting.2004.12.004.

50. Jawaid, M., & Abdul Khalil, H. P. S. (2011). Cellulosic/synthetic fibre reinforced polymer hybrid composites: a review. Carbohydrate Polymers, 86(1), 1-18. http://dx.doi.org/10.1016/j.carbpol.2011.04.043.

51. Xu, F., Shi, Y. C., & Wang, D. (2013). X-ray scattering studies of lignocellulosic biomass: a review. Carbohydrate Polymers, 94(2), 904-917. http://dx.doi.org/10.1016/j.carbpol.2013.02.008. PMid:23544649

52. Alemdar, A., & Sain, M. (2008). Biocomposites from wheat straw nanofibers: morphology, thermal and mechanical properties. Composites Science and Technology, 68(2), 557-565. http://dx.doi.org/10.1016/j.compscitech.2007.05.044.

53. Chen, L., Hong, F., Yang, X. X., & Han, S. F. (2013). Biotransformation of wheat straw to bacterial cellulose and its mechanism. Bioresource Technology, 135, 464-468. http://dx.doi.org/10.1016/j.biortech.2012.10.029. PMid:23186663

54. Cordeiro, N., Ornelas, M., Ashori, A., Sheshmani, S., & Norouzi, H. (2012). Investigation on the surface properties of chemically modified natural fibers using inverse gas chromatography. Carbohydrate Polymers, 87(4), 2367-2375. http://dx.doi.org/10.1016/j.carbpol.2011.11.001.

55. Kaushika, A., Singh, M., & Verma, G. (2010). Green nanocomposites based on thermoplastic starch and steam exploded cellulose nanofibrils from wheat straw. Carbohydrate Polymers, 82(2), 337-345. http://dx.doi.org/10.1016/j.carbpol.2010.04.063.

56. Bledzki, A. K., Mamun, A. A., & Volk, J. (2010). Barley husk and coconut shell reinforced polypropylene composites: the effect of fibre physical, chemical and surface properties. Composites Science and Technology, 70(5), 840-846. http://dx.doi.org/10.1016/j.compscitech.2010.01.022.

57. Anselmo Filho, P., & Bahr, O. (2004). Biomass resources for energy in North-Eastern Brazil. Applied Energy, 77(1), 51-67. http://dx.doi.org/10.1016/S0306-2619(03)00095-3.

58. Fengel, D., & Wegener, G. (1989). Wood chemistry, ultrastructure, reactions. New York: Walter de Gruyter.

59. Castro, D. O. (2010). Biocompósitos a partir de biopolietileno de alta densidade reforçado por fibras de curauá (Dissertação de Mestrado). Universidade de São Paulo, São Carlos.

60. Hendriks, A. T. W. M., & Zeeman, G. (2009). Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresource Technology, 100(1), 10-18. http://dx.doi.org/10.1016/j.biortech.2008.05.027. PMid:18599291

61. Meyer, K. H., & Mark, H. (1928). Uber den bau des krystallisierten anteils der cellulose. Berichte der Deutschen Chemischen Gesellschaft, 61, 593-614.

62. D’ Almeida, M. L. O. (1998). Celulose e papel: tecnologia de fabricação da pasta celulósica (2nd ed.). São Paulo: SENAI.

63. Rowell, R. M. (2005). Handbook of wood chemistry and wood composites. Bota Raton: CRC.

64. Hon, D. N. S. (1996). Chemical modification of lignocellulosic materials. New York: Marcel Dekker.

65. Troedec, M. L., Sedan, D., Peyrsatout, C., Bonnet, J. P., Smith, A., Guinebretiere, R., Gloaguen, V., & Krausz, P. (2008). Influence of various chemical treatments on the composition and structure of hemp fibres. Composites Part A: Applied Science and Manufacturing, 39(3), 514-522. http://dx.doi.org/10.1016/j.compositesa.2007.12.001.

66. Torres, F. G., & Cubillas, M. L. (2005). Study of the interfacial properties of natural fibre reinforced polyethylene. Polymer Testing, 24(6), 694-698. http://dx.doi.org/10.1016/j.polymertesting.2005.05.004.

67. Joseph, P. V., Joseph, K., Thomas, S., Pillai, C. K. S., Prasad, V. S., Groeninckx, G., & Sarkissova, M. (2003). The thermal and crystallisation studies of short sisal fibre reinforced polypropylene composites. Composites Part A: Applied Science and Manufacturing, 34(3), 253-266. http://dx.doi.org/10.1016/S1359-835X(02)00185-9.

68. Araújo, J. R., Waldman, W. R., & De Paoli, M. A. (2008). Thermal properties of high density polyethylene composites with natural fibres: coupling agent effect. Polymer Degradation & Stability, 93(10), 1770-1775. http://dx.doi.org/10.1016/j.polymdegradstab.2008.07.021.

69. Mulinari, D. R., Baptista, C. A. R. P., Souza, J. V. C., & Voorwald, H. J. C. (2011). Mechanical properties of coconut fibers reinforced polyester composites. Procedia Engineering, 10, 2074-2079. http://dx.doi.org/10.1016/j.proeng.2011.04.343.

70. Souza, P. S., Rodrigues, E. F., Prêta, J. M. C., Goulart, S. A. S., & Mulinari, D. R. (2011). Mechanical properties of HDPE/textile fibers composites. Procedia Engineering, 10, 2040-2045. http://dx.doi.org/10.1016/j.proeng.2011.04.338.

71. Goulart, S. A. S., Oliveira, T. A., Teixeira, A., Miléo, P. C., & Mulinari, D. R. (2011). Mechanical behaviour of polypropylene reinforced palm fibers composites. Procedia Engineering, 10, 2034-2039. http://dx.doi.org/10.1016/j.proeng.2011.04.337.

72. Oliveira, T. A., Teixeira, A., Mulinari, D. R., & Goulart, S. A. S. (2010). Avaliação do uso de agente compatibilizante no comportamento mecânico dos compósitos PEBD reforçados com fibras de coco verde. Cadernos UniFOA, 14, 11-17.

73. Liu, L., Yu, J., Cheng, L., & Qu, W. (2009a). Mechanical properties of poly(butylene succinate) (PBS) biocomposites reinforced with surface modified jute fibre. Composites Part A: Applied Science and Manufacturing, 40(5), 669-674. http://dx.doi.org/10.1016/j.compositesa.2009.03.002.

74. Brugnago, R. J., Satyanarayana, K. G., Wypych, F., & Ramos, L. P. (2011). The effect of steam explosion on the production of sugarcane bagasse/polyester composites. Composites Part A: Applied Science and Manufacturing, 42(4), 364-370. http://dx.doi.org/10.1016/j.compositesa.2010.12.009.

75. Bailly, M., & Kontopoulou, M. (2009). Preparation and characterization of thermoplastic olefin/nanosilica composites using a silane-grafted polypropylene matrix. Polymer, 50(11), 2472-2480. http://dx.doi.org/10.1016/j.polymer.2009.03.034.

76. Frollini, E., Leão, A. L., & Mattoso, L. H. C. (2000). Natural polymers and agrofibers composites. São Carlos: USP.

77. Hashemi, S. A., Arabi, H., & Mirzaeyan, N. (2007). Surface modification of bagasse fibers by silane coupling agents through microwave oven and its effects on physical, mechanical, and rheological properties of PP bagasse fiber composite. Polymer Composites, 28(6), 713-721. http://dx.doi.org/10.1002/pc.20398.

78. Ruggiero, R., Machado, A. E. H., Hoareau, W., Gardrat, C., Nourmamode, A., Grelier, S., & Castellan, A. (2006). Photodegradation of sugarcane bagasse fibers: influence of acetylation or grafting UV-absorber and/or hindered nitroxide radical on their photostability. Journal of the Brazilian Chemical Society, 17(4), 763-770. http://dx.doi.org/10.1590/S0103-50532006000400019.

79. Marques, P. A. A., Trindade, T., & Neto, C. P. (2006). Titanium dioxide/cellulose nanocomposites prepared by a controlled hydrolysis method. Composites Science and Technology, 66(7-8), 1038-1044. http://dx.doi.org/10.1016/j.compscitech.2005.07.029.

80. Pavan, F. A., Francisco, M. S. P., Landers, R., & Gushikem, Y. (2005). Adsorption of phosphoric acid on niobium oxide coated cellulose fiber: preparation, characterization and ion exchange property. Journal Brazilian Society, 16(4), 815-820. http://dx.doi.org/10.1590/S0103-50532005000500021.

81. Daoud, W. A., Xin, J. H., & Zhang, Y. (2005). Surface functionalization of cellulose fibers with titanium dioxide nanoparticles and their combined bactericidal activities. Surface Science, 599(1-3), 69-75. http://dx.doi.org/10.1016/j.susc.2005.09.038.

82. Mulinari, D. R., & Da Silva, M. L. C. P. (2008). Adsorption of sulphate ions by modification of sugarcane bagasse cellulose. Carbohydrate Polymers, 74(3), 617-620. http://dx.doi.org/10.1016/j.carbpol.2008.04.014.

83. Karnitz, O. Jr, Gurgel, L. V. A., Freitas, R. P., & Gil, L. F. (2009). Adsorption of Cu(II), Cd(II), and Pb(II) from aqueous single metal solutions by mercerized cellulose and mercerized sugarcane bagasse chemically modified with EDTA dianhydride (EDTAD). Carbohydrate Polymers, 77(3), 643-650. http://dx.doi.org/10.1016/j.carbpol.2009.02.016.

84. Alfaya, R. V. S., & Gushikem, Y. (1999). Aluminum oxide coated cellulose fibers modified with n-propylpyridinium chloride silsesquioxane polymer: preparation, characterization, and adsorption of some metal halides from ethanol solution. Journal of Colloid and Interface Science, 213(2), 438-444. http://dx.doi.org/10.1006/jcis.1998.6032. PMid:10222085

85. Esumi, K. (1999). Polymer interfaces and emulsions. New York: Marcel Dekker.

86. Mulinari, D. R., Silva, G. L. J. P., Rodrigues, L. A., & Silva, M. L. C. P. (2007). Adsorção de íons fosfato nos compósitos celulose/ZrO2.nH2O preparados pelos métodos da precipitação convencional e em solução homogênea. Cerâmica, 53(328), 345-353. http://dx.doi.org/10.1590/S0366-69132007000400003.

87. Satyanarayana, K. G., Arizaga, G. G. C., & Wypych, F. (2009). Biodegradable composites based on lignocellulosic fibers—an overview. Progress in Polymer Science, 34(9), 982-1021. http://dx.doi.org/10.1016/j.progpolymsci.2008.12.002.

88. Tita, S. P. S., Paiva, J. M. F., & Frollini, E. (2002). Resistência ao impacto e outras propriedades de compósitos lignocelulósicos: matrizes termofixas fenólicas reforçadas com fibras de bagaço de cana-de-açúcar. Polímeros: Ciência e Tecnologia, 12(4), 228-239. http://dx.doi.org/10.1590/S0104-14282002000400005.

89. Ku, H., Wang, H., Pattarachaiyakoop, N., & Trada, M. (2011). A review on the tensile properties of natural fiber reinforced polymer composites. Composites Part B: Engineering, 42(4), 856-873. http://dx.doi.org/10.1016/j.compositesb.2011.01.010.

90. Ghali, L., Aloui, M., Zidi, M., Bendaly, H., M’Sahli, S., & Sakli, F. (2011). Effect of chemical modification of Luffa cylindrical fibres on the mechanical and hydrothermal behaviours of polyester/luffa composites. BioResources, 6(4), 3836-3849.

91. Arrakhiz, F. Z., Elachaby, M., Bouhfid, R., Vaudreuil, S., Essassi, M., & Qaiss, A. (2012). Mechanical and thermal properties of polypropylene reinforced with Alfa fiber under different chemical treatment. Materials & Design, 35, 318-322. http://dx.doi.org/10.1016/j.matdes.2011.09.023.

92. Le Duc, A., Vergnes, B., & Budtova, T. (2011). Polypropylene/natural fibres composites: analysis of fibre dimensions after compounding and observations of fibre rupture by rheo-optics. Composites Part A: Applied Science and Manufacturing, 42(11), 1727-1737. http://dx.doi.org/10.1016/j.compositesa.2011.07.027.

93. Ishizaki, M. H., Visconte, L. L. Y., Furtado, C. R. G., Leite, M. C. A. M., & Leblanc, J. L. (2006). Caracterização mecânica e morfológica de compósitos de polipropileno e fibras de coco verde: influência do teor de fibra e das condições de mistura. Polímeros: Ciência e Tecnologia, 16(3), 182-186. Araujo, J. R., Mano, B., Teixeira, G. M., Spinacé, M. A. S., & De Paoli, M. A. (2010). Biomicrofibrilar composites of high density polyethylene reinforced with curauá fibers: Mechanical, interfacial and morphological properties. Composites Science Vegetal fibers in polymeric composites: a review Polímeros, 25(1), 9-22, 2015 19 and Technology, 70(11), 1637-1644. http://dx.doi.org/10.1016/j.compscitech.2010.06.006.

95. Pereira, P. H. F., Benini, K. C. C. C., Watashi, C. Y., Voorwald, H. J. C., & Cioffi, M. O. H. (2013). Characterization of High density polyethylene (HDPE) reinforced with banana peel fibers. BioResoures, 8(2), 2351-2365.

96. Haque, M. M., Hasan, M., Islam, M. S., & Ali, M. E. (2009). Physico-mechanical properties of chemically treated palm and coir fiber reinforced polypropylene composites. Bioresource Technology, 100(20), 4903-4906. http://dx.doi.org/10.1016/j.biortech.2009.04.072. PMid:19477124

97. Morandim-Giannetti, A. A., Agnelli, J. A. M., Lanças, B. Z., Magnabosco, R., Casarin, S. A., & Bettini, S. H. P. (2012). Lignin as additive in polypropylene/coir composites: Thermal, mechanical and morphological properties. Carbohydrate Polymers, 87(4), 2563-2568. http://dx.doi.org/10.1016/j.carbpol.2011.11.041.

98. Summerscales, J., Dissanayake, N. P. J., Virk, A. S., & Hall, W. (2010). A review of bast fibres and their composites. Part 1 – Fibres as reinforcements. Composites Part A: Applied Science and Manufacturing, 41(10), 1329-1335. http://dx.doi.org/10.1016/j.compositesa.2010.06.001.

99. Rosário, F., Pachekoski, W. M., Silveira, A. P. J., Santos, S. F., Júnior, H. S., & Casarin, S. A. (2011). Resíduos de sisal como reforço em compósitos de polipropileno virgem e reciclado. Ciência e Tecnologia, 21(2), 90-97.

100. Fuentes, C. A., Tran, L. Q. N., Van Hellemont, M., Janssens, V., Dupont-Gillain, C., Van Vuure, A. W., & Verpoest, I. (2013). Effect of physical adhesion on mechanical behaviour of bamboo fibre reinforced thermoplastic composites. Colloids and Surfaces A: Pysicochemical and Engeneering Aspects, 418, 7-15. http://dx.doi.org/10.1016/j.colsurfa.2012.11.018.

101. George, G., Jose, E. T., Jayanarayanan, K., Nagarajan, E. R., Skrifvars, M., & Joseph, K. (2012). Novel bio-commingled composites based on jute/polypropylene yarns: effect of chemical treatments on the mechanical properties. Composites Part A: Applied Science and Manufacturing, 43(1), 219-230. http://dx.doi.org/10.1016/j.compositesa.2011.10.011.

102. Choudhury, A. (2008). Isothermal crystallization and mechanical behavior of ionomer treated sisal/HDPE composites. Materials Science and Engineering A, 491(1-2), 492-500. http://dx.doi.org/10.1016/j.msea.2008.03.011.

103. Mattoso, L. H. C. (1999). Conferência internacional de compósitos reforçados com fibras vegetais. Polímeros: Ciência e Tecnologia, 9(2), 16. http://dx.doi.org/10.1590/S0104-14281999000200008.

104. Joseph, K., Medeiros, E. S., & Carvalho, L. H. (1999). Compósitos de matriz poliéster reforçados por fibras curtas de sisal. Polímeros: Ciência e Tecnologia, 9(4), 136-141. http://dx.doi.org/10.1590/S0104-14281999000400023.

105. Paiva, J. M. F., Silva, S. P., Tanaka, I. A., Trindade, W. G., Angelucci, C. A., & Frollini, E. (2000). Impact strength of phenolic matrices reinforced with lignocellulosic material. In L. H. C., Mattoso, A. Leão, & E. Frollini (Eds.), Natural polymers and composite (pp. 460-468). São Carlos: EMBRAPA.

106. Pandey, A., Soccol, C. R., Nigam, P., & Soccol, V. T. (2000). Biotechnological potential of agro-industrial residues. I: sugarcane bagasse. Bioresource Technology, 74(1), 69-80. http://dx.doi.org/10.1016/S0960-8524(99)00142-X.

107. Mochnacz, S., Amico, S. C., & Sydenstricker, T. H. D. (2002). Caracterização e modificação superficial de fibras de sisal para utilização em compósitos poliméricos. In: Anais do Congresso em Ciências dos Materiais do Mercosul (pp. 182). Joinville: SULMAT.

108. Mothé, C. G., & Araújo, C. R. (2004). Caracterização térmica e mecânica de compósitos de poliuretano com fibras de curauá. Polímeros: Ciência e Tecnologia, 14(4), 274-278.

109. Adinugraha, M. P., Marseno, D. W., & Haryadi, P. (2005). Synthesis and characterization of sodium carboxymethylcellulose from cavendish banana pseudo stem (Musa cavendishii LAMBERT). Carbohydrate Polymers, 62(2), 164-169. http://dx.doi.org/10.1016/j.carbpol.2005.07.019.

110. Luz, S. M., Gonçalves, A. R., & Del`Arco, A. P. Jr (2007). Mechanical behavior and microstructural analysis of sugarcane bagasse fibers reinforced polypropylene composites. Composites Part A: Applied Science and Manufacturing, 38(6), 1455-1461. http://dx.doi.org/10.1016/j.compositesa.2007.01.014.

111. Monteiro, S. N., Aquino, R. C. M. P., Lopes, P. D., Carvalho, E. A., & D`Almeida, J. R. (2006). Comportamento mecânico e características estruturais de compósitos poliméricos reforçados com fibras contínuas e alinhadas de caruará. Revista Matéria, 11(3), 197-203.

112. Mohan Rao, K. M., & Mohana Rao, K. (2007). Extraction and tensile properties of natural fibres: vakka, date and bamboo. Composite Structures, 77, 288-295.

113. Albertini, S., Do Carmo, L. F., & Prado Filho, L. G. (2007). Utilização de serragem e bagaço de cana-de-açúcar para adsorção de cádmio. Ciência e Tecnologia de Alimentos, 27(1), 113-118. http://dx.doi.org/10.1590/S0101-20612007000100020.

114. Sapuan, S. M., Leenie, A., Harimi, M., & Beng, Y. K. (2006). Mechanical properties of woven banana fibre reinforced epoxy composites. Materials & Design, 27(8), 689-693. http://dx.doi.org/10.1016/j.matdes.2004.12.016.

115. Bilba, K., Arsene, M. A., & Ouensanga, A. (2007). Study of banana and coconut fibers botanical composition, thermal degradation and textural observations. Bioresource Technology, 98(1), 58-68. http://dx.doi.org/10.1016/j.biortech.2005.11.030. PMid:16442281

116. Mano, B., Araújo, J. R., Spinacé, M. A. S., & De Paoli, M. A. (2010). Polyolefin composites with curaua fibres: effect of the processing conditions on mechanical properties, morphology and fibres dimensions. Composites Science and Technology, 70(1), 29-35. http://dx.doi.org/10.1016/j.compscitech.2009.09.002.

117. Moigne, N. L., Oever, M., & Budtova, T. (2011). A statistical analysis of fibre size and shape distribution after compounding in composites reinforced by natural fibres. Composites. Part A, Applied Science and Manufacturing, 42(10), 1542-1550. http://dx.doi.org/10.1016/j.compositesa.2011.07.012.

118. John, M. J., & Anandjiwala, R. D. (2009). Chemical modification of flax reinforced polypropylene composites. Composites Part A: Applied Science and Manufacturing, 40(4), 442-448.

119. Yan, Z. L., Wang, H., Lau, K. T., Pather, S., Zhang, J. C., Lin, G., & Ding, Y. (2013). Reinforcement of polypropylene with hemp fibres. Composites Part B: Engineering, 46, 221-226. http://dx.doi.org/10.1016/j.compositesb.2012.09.027.

120. Acha, B. A., Reboredo, M. M., & Marcovich, N. E. (2007). Creep and dynamic mechanical behavior of PP–jute composites: effect of the interfacial adhesion. Composites Part A: Applied Science and Manufacturing, 38(6), 1507-1516. http://dx.doi.org/10.1016/j.compositesa.2007.01.003.

121. Kaewkuk, S., Sutapun, W., & Jarukumjorn, K. (2013). Effects of interfacial modification and fiber content on physical properties of sisal fiber/polypropylene composites. Composites Part B: Engineering, 45(1), 544-549. http://dx.doi.org/10.1016/j.compositesb.2012.07.036.

122. Cerqueira, E. F., Baptista, C. A. R. P., & Mulinari, D. R. (2011). Mechanical behaviour of polypropylene reinforced sugarcane bagasse fibers composites. Procedia Engineering, 10, 2046-2051. http://dx.doi.org/10.1016/j.proeng.2011.04.339.

123. Ibrahim, M. M., Dufresne, A., El-Zawawy, W. K., & Agblevor, F. A. (2010). Banana fibers and microfibrils as lignocellulosic reinforcements in polymer composites. Carbohydrate Polymers, 81(4), 811-819. http://dx.doi.org/10.1016/j.carbpol.2010.03.057.

124. Brahmakumar, M., Pavithran, C., & Pillai, R. M. (2005). Coconut fibre reinforced polyethylene composites: effect of natural waxy surface layer of the fibre on fibre/matrix interfacial bonding and strength of composites. Composites Science and Technology, 65(3-4), 563-569. http://dx.doi.org/10.1016/j.compscitech.2004.09.020.

125. Rahman, R., Islam, N., Huque, M., Hamdan, S., & Ahmed, A. S. (2010). Effect of chemical treatment on Rice Husk (RH) reinforced Polyethylene (PE) composites. BioResources, 5(2), 854-869.

126. Ahmad, E. E. M., & Luyt, A. S. (2012). Effects of organic peroxide and polymer chain structure on morphology and thermal properties of sisal fibre reinforced polyethylene composites. Composites Part A: Applied Science and Manufacturing, 43(4), 703-710. http://dx.doi.org/10.1016/j.compositesa.2011.12.011.

127. Liu, H., Wu, Q., & Zhang, Q. (2009b). Preparation and properties of banana fiber-reinforced composites based on high density polyethylene (HDPE)/Nylon-6 blends. Bioresource Technology, 100(23), 6088-6097. http://dx.doi.org/10.1016/j.biortech.2009.05.076. PMid:19574041

128. Adhikary, K. B., Pang, S., & Staiger, M. P. (2008). Dimensional stability and mechanical behaviour of wood–plastic composites based on recycled and virgin High-Density Polyethylene (HDPE). Composites Part B: Engeneering, 39(5), 807-815. http://dx.doi.org/10.1016/j.compositesb.2007.10.005.

129. Carvalho, K. C. C., Mulinari, D. R., Voorvald, H. J. C., & Cioffi, M. O. H. (2010). Chemical modification effect on the mechanical properties of HIPS/coconut fiber composites. BioResources, 5(2), 1143-1155.

130. Antich, P., Vázquez, A., Mondragon, I., & Bernal, C. (2006). Mechanical behavior of high impact polystyrene reinforced with short sisal fibers. Composites Part A: Applied Science and Manufacturing, 37(1), 139-150. http://dx.doi.org/10.1016/j.compositesa.2004.12.002.

131. Benini, K. C. C. C., Cioffi, M. O. H., & Voorwald, H. J. C. (2011). Mechanical properties of HIPS/sugarcane bagasse fiber composites after accelerated weathering. Procedia Engineering, 10, 3254-3259.

132. Wong, K. J., Zahi, S., Low, K. O., & Lim, C. C. (2010). Fracture characterisation of short bamboo fibre reinforced polyester composites. Materials & Design, 31(9), 4147-4154. http://dx.doi.org/10.1016/j.matdes.2010.04.029.

133. Sreekumar, P. A., Albert, P., Unnikrishnan, G., Joseph, K., & Thomas, S. (2008). Mechanical and water sorption studies of ecofriendly banana fiber-reinforced polyester composites fabricated by RTM. Journal of Applied Polymer Science, 109(3), 1547-1555. http://dx.doi.org/10.1002/app.28155.

134. Mariatti, M., Jannah, M., Abu Bakar, A., & Abdul Khalil, V. J. (2008). Properties of banana and pandanus woven fabric reinforced unsaturated polyester composites. Journal of Composite Materials, 42(9), 931-941. http://dx.doi.org/10.1177/0021998308090452.

135. Monteiro, S. N., Terrones, L. A. H., & D’Almeida, J. R. M. (2008). Mechanical performance of coir fiber/polyester composites. Polymer Testing, 27(5), 591-595. http://dx.doi.org/10.1016/j.polymertesting.2008.03.003.

136. Monteiro, S. N., Aquino, R. C. M. P., & Lopes, F. P. D. J. (2008). Performance of curaua fibers in pullout tests. Materials Science, 43(2), 489-493. http://dx.doi.org/10.1007/s10853-007-1874-5.

137. Charlet, K., Jernot, J. P., Gomina, M. J., Bizet, L., & Breard, J. (2010). Mechanical properties of flax fibers and of the derived unidirectional composites. Journal of Composite Materials, 44(24), 2887-2896. http://dx.doi.org/10.1177/0021998310369579.

138. Alix, S., Philippe, E., Bessadok, A., Lebrun, L., Morvan, C., & Marais, S. (2009). Effect of chemical treatments on water sorption and mechanical properties of flax fibres. Bioresource Technology, 100(20), 4742-4749. http://dx.doi.org/10.1016/j.biortech.2009.04.067. PMid:19477120

139. Sawpan, M. A., Pickering, K. L., & Fernyhough, A. V. (2011). Effect of fibre treatments on interfacial shear strength of hemp fibre reinforced polylactide and unsaturated polyester composites. Composites Part A: Applied Science and Manufacturing, 42(9), 1189-1196. http://dx.doi.org/10.1016/j.compositesa.2011.05.003.

140. Rouison, D., Sain, M., & Couturier, M. (2006). Resin transfer molding of hemp fiber composites: optimization of the process and mechanical properties of the materials. Composites Science and Technology, 66(7-8), 895-906. http://dx.doi.org/10.1016/j.compscitech.2005.07.040.

141. Sever, K., Sarikanat, M., Seki, Y., Erkan, G., Erdogan, U. H., & Erden, S. (2012). Surface treatments of jute fabric: the influence of surface characteristics on jute fabrics and mechanical properties of jute/polyester composites. Industrial Crops and Products, 35(1), 22-30. http://dx.doi.org/10.1016/j.indcrop.2011.05.020.

142. Akil, H. M., Cheng, L. W., Mohd Ishak, Z. A., Abu Bakar, A., & Abd Rahman, M. A. (2009). Water absorption study on pultruded jute fibre reinforced unsaturated polyester composites. Composites Science and Technology, 69(11-12), 1942-1948. http://dx.doi.org/10.1016/j.compscitech.2009.04.014.

143. Devi, L. U., Bhagawan, S. S., & Thomas, S. (2011). Dynamic mechanical properties of pineapple leaf fiber polyester composites. Polymer Composites, 32(11), 1741-1750. http://dx.doi.org/10.1002/pc.21197.

144. Idicula, M., Boudenne, A., Umadevi, L., Ibos, L., Candau, Y., & Thomas, S. (2006). Thermophysical properties of natural fibre reinforced polyester composites. Composites Science and Technology, 66(15), 2719-2725. http://dx.doi.org/10.1016/j.compscitech.2006.03.007.

145. Sreekumar, P. A., Saiah, R., Saiter, J. M., Leblanc, N., Joseph, K., Unnikrishnan, G., & Thomas, S. (2009). Dynamic mechanical properties of sisal fiber reinforced polyester composites fabricated by resin transfer molding. Polymer Composites, 30(6), 768-775. http://dx.doi.org/10.1002/pc.20611.

146. Sreekumar, P. A., Thomas, S. P., Saiter, J. M., Joseph, K., Unnikrishnan, G., & Thomas, S. (2009). Effect of fiber surface modification on the mechanical and water absorption characteristics of sisal/polyester composites fabricated by resin transfer molding. Composites Part A: Applied Science and Manufacturing, 40(11), 1777-1784. http://dx.doi.org/10.1016/j.compositesa.2009.08.013.

147. Rodrigues, E. F., Maia, T. F., & Mulinari, D. R. (2011). Tensile strength of polyester resin reinforced sugarcane bagasse fibers modified by estherification. Procedia Engineering, 10, 2348-2352. http://dx.doi.org/10.1016/j.proeng.2011.04.387.

148. Merlini, C., Soldi, V., & Barra, G. M. O. (2011). Influence of fiber surface treatment and length on physico-chemical properties of short random banana fiber-reinforced castor oil polyurethane composites. Polymer Testing, 30(8), 833-840. http://dx.doi.org/10.1016/j.polymertesting.2011.08.008.

149. Mothé, C. G., & Araújo, C. R. (2000). Properties of polyurethane elastomers and composites by thermal analysis. Thermochimica Acta, 357-358, 321-325. http://dx.doi.org/10.1016/S0040-6031(00)00403-2.

150. Bakare, I. O., Okieimen, F. E., Pavithran, C., Abdul Khalil, H. P. S., & Brahmakumar, M. (2010). Mechanical and thermal properties of sisal fiber-reinforced rubber seed oil-based polyurethane composites. Materials & Design, 31(9), 4274-4280. http://dx.doi.org/10.1016/j.matdes.2010.04.013.

151. Milanese, A. C., Cioffi, M. O. H., & Voorwald, H. J. C. (2011). Mechanical behavior of natural fiber composites. Procedia Engineering., 10, 2022-2027. http://dx.doi.org/10.1016/j.proeng.2011.04.335.

152. Venkateshwaran, N., ElayaPerumal, A., Alavudeen, A., & Thiruchitrambalam, M. (2011). Mechanical and water absorption behaviour of banana/sisal reinforced hybrid composites. Materials & Design, 32(7), 4017-4021. http://dx.doi.org/10.1016/j.matdes.2011.03.002.

153. Biswas, S., Kindo, S., & Patnaik, A. (2011). Effect of fiber length on mechanical behavior of coir fiber reinforced epoxy composites. Fibers and Polymers, 12(1), 73-78. http://dx.doi.org/10.1007/s12221-011-0073-9.

154. Harish, S., Michael, D. P., Bensely, A., Lal, D. M., & Rajadurai, A. (2009). Mechanical property evaluation of natural fiber coir composite. Materials Characterization, 60(1), 44-49. http://dx.doi.org/10.1016/j.matchar.2008.07.001.

155. Gohil, P. P., & Shaikh, A. A. (2011). Cotton-epoxy composites: development and mechanical characterization. Key Engineering Materials, 471-472, 291-296. http://dx.doi.org/10.4028/www.scientific.net/KEM.471-472.291.

156. Gning, P. B., Liang, S., Guillaumat, L., & Pui, W. J. (2011). Influence of process and test parameters on the mechanical properties of flax/epoxy composites using response surface methodology. Journal of Materials Science, 46(21), 6801-6811. http://dx.doi.org/10.1007/s10853-011-5639-9.

157. Liu, Q., & Hughes, M. (2008). The fracture behaviour and toughness of woven flax fibre reinforced epoxy composites. Composites. Part A, Applied Science and Manufacturing, 39(10), 1644-1652. http://dx.doi.org/10.1016/j.compositesa.2008.07.008.

158. Buksnowitz, C., Adusumalli, R., Pahler, A., Sixta, H., & Gindl, W. J. (2010). Acoustical properties of Lyocell, hemp, and flax composites. Journal of Reinforced Plastics and Composites, 29(20), 3149-3154. http://dx.doi.org/10.1177/0731684410367533.

159. Karaduman, Y., & Onal, L. (2011). Water absorption behavior of carpet waste jute-reinforced polymer composites. Journal of Composite Materials, 45(15), 1559-1571. http://dx.doi.org/10.1177/0021998310385021.

160. Mir, A., Zitoune, R., Collombet, F., & Bezzazi, B. (2010). Study of mechanical and thermomechanical properties of jute/epoxy composite laminate. Journal of Reinforced Plastics and Composites, 29(11), 1669-1680. http://dx.doi.org/10.1177/0731684409341672.

161. Satapathy, A., Mantry, S., Singh, S. K., & Patnaik, A. (2010). Processing and characterization of jute-epoxy composites reinforced with SiC derived from rice husk. Journal of Reinforced Plastics and Composites, 29(18), 2869-2878.http://dx.doi.org/10.1177/0731684409341757.

162. Seki, Y. (2009). Innovative multifunctional siloxane treatment of jute fiber surface and its effect on the mechanical properties of jute/thermoset composites. Materials Science and Engineering A, 508(1-2), 247-252. http://dx.doi.org/10.1016/j.msea.2009.01.043.

163. Lopattananon, N., Payae, Y., & Seadan, M. (2008). Influence of fiber modification on interfacial adhesion and mechanical properties of pineapple leaf fiber-epoxy composites. Journal of Applied Polymer Science, 110(1), 433-443. http://dx.doi.org/10.1002/app.28496.

164. Mohan, T. P., & Kanny, K. (2011). Water barrier properties of nanoclay filled sisal fibre reinforced epoxy composites. Composites Part A: Applied Science and Manufacturing, 42(4), 385-393. http://dx.doi.org/10.1016/j.compositesa.2010.12.010.

165. Tragoonwichian, S., Yanumet, N., & Ishida, H. J. (2007). Effect of fiber surface modification on the mechanical properties of sisal fiber-reinforced benzoxazine/epoxy composites based on aliphatic diamine benzoxazine. Journal of Applied Polymer Science, 106(5), 2925-2935. http://dx.doi.org/10.1002/app.25797.

166. Joseph, S., Sreekala, M. S., & Thomas, S. (2008). Effect of chemical modifications on the thermal stability and degradation of banana fiber and banana fiber-reinforced phenol formaldehyde composites. Journal of Applied Polymer Science, 110(4), 2305-2314. http://dx.doi.org/10.1002/app.27648.

167. Joseph, S., & Thomas, S. (2008). Electrical properties of banana fiber-reinforced phenol formaldehyde composites. Journal of Applied Polymer Science, 109(1), 256-263. http://dx.doi.org/10.1002/app.27452.

168. Chauhan, S. R., Patnaik, A., Kaith, B. S., Satapathy, A., & Dwivedy, M. (2009). Journal of Reinforced Plastics and Composites, 28(16), 1933-1944. http://dx.doi.org/10.1177/0731684407089131.

169. Kalia, S., Kaith, B. S., Sharma, S., & Bhardwaj, B. (2008). Mechanical properties of flax-g-poly(methyl acrylate) reinforced phenolic composites. Fibers and Polymers, 9(4), 416-422. http://dx.doi.org/10.1007/s12221-008-0067-4.

170. Barreto, A. C. H., Esmeraldo, M. A., Rosa, D. S., Fechine, P. B. A., & Mazzetto, S. E. (2010). Cardanol biocomposites reinforced with jute fiber: microstructure, biodegradability, and mechanical properties. Polymer Composites, 31(11), 1928-1937. http://dx.doi.org/10.1002/pc.20990.

171. Barreto, A. C. H., Rosa, D. S., Fechine, P. B. A., & Mazzetto, S. E. (2011). Properties of sisal fibers treated by alkali solution and their application into cardanol-based biocomposites. Composites Part A: Applied Science and Manufacturing, 42(5), 492-500. http://dx.doi.org/10.1016/j.compositesa.2011.01.008.

172. Peng, X., Zhong, L., Ren, J., & Sun, R. (2010). Laccase and alkali treatments of cellulose fibre: surface lignin and its influences on fibre surface properties and interfacial behaviour of sisal fibre/phenolic resin composites. Composites Part A: Applied Science and Manufacturing, 41(12), 1848-1856. http://dx.doi.org/10.1016/j.compositesa.2010.09.004.

173. Botaro, V. R., Siqueira, G., Megiatto, J. D. Jr, & Frollini, E. (2010). Sisal fibers treated with NaOH and benzophenonetetracarboxylic dianhydride as reinforcement of phenolic matrix. Journal of Applied Polymer Science, 115(1), 269-276. http://dx.doi.org/10.1002/app.31113.

174. Zhong, L., Fu, S., Li, F., & Zhan, H. (2010). Chlorine dioxide treatment of sisal fibre: surface lignin and its influences on fibre surface characteristics and interfacial behaviour of sisal fibre/phenolic resin composites. BioResources, 5(4), 2431-2446.

175. Milanese, A. C., Cioffi, M. O. H., & Voorwald, H. J. C. (2012a). Flexural behavior of sisal/castor oil-based polyurethane and sisal/phenolic composites. Journal of Materials Research, 15(2), 191-197. http://dx.doi.org/10.1590/S1516-14392012005000019.

176. Nicolai, F. N. P., Botaro, V. R., & Lins, V. F. C. (2008). Effect of saline degradation on the mechanical properties of vinyl ester matrix composites reinforced with glass and natural fibers. Journal of Applied Polymer Science, 108(4), 2494-2502. http://dx.doi.org/10.1002/app.27909.

177. Argento, A., Kim, W., Lee, E. C., Harris, A. M., & Mielewski, D. F. (2011). Rate dependencies and energy absorption characteristics of nanoreinforced, biofiber, and microcellular polymer composites. Polymer Composites, 32(9), 1423-1429. http://dx.doi.org/10.1002/pc.21169.

178. Rassmann, S., Paskaramoorthy, R., & Reid, R. G. (2011). Effect of resin system on the mechanical properties and water absorption of kenaf fibre reinforced laminates. Materials & Design, 32(3), 1399-1406. http://dx.doi.org/10.1016/j.matdes.2010.09.006.

179. Taj, S., Munawar, M. A., & Khan, S. U. (2007). Review: natural fiber-reinforced polymer composites. Proceedings of the Pakistan Academy of Sciences, 44(2), 129-144.

180. Rodríguez, E. S., Stefani, P. M., & Vázquez, A. (2007). Effects of fibers’ alkali treatment on the resin transfer molding processing and mechanical properties of jute-- vinylester composites. Journal of Composite Materials, 41(14), 1729-1741. http://dx.doi.org/10.1177/0021998306069889.

181. Alvarez, V., Rodríguez, E., & Vázquez, A. J. (2006). Thermal degradation and decomposition of jute/vinylester composites. Journal of Thermal Analysis and Calorimetry, 85(2), 383-389. http://dx.doi.org/10.1007/s10973-005-7102-0.

182. Mohamed, A. R., Sapuan, S. M., Shahjahan, M., & Khalina, A. (2010). Effects of simple abrasive combing and pretreatments on the properties of Pineapple Leaf Fibers (Palf) and palf-vinyl ester composite adhesion. Polymer-Plastics Technology and Engineering, 49(10), 972-978. http://dx.doi.org/10.1080/03602559.2010.482072.

183. Song, J. H., Mun, S. D., & Kim, C. S. (2011). Mechanical properties of sisal natural fiber composites according to strain rate and absorption ratio. Polymer Composites, 32(8), 1174-1180. http://dx.doi.org/10.1002/pc.21136.

184. Kim, H. J. K., & Seo, D. W. (2006). Effect of water absorption fatigue on mechanical properties of sisal textile-reinforced composites. International Journal of Fatigue, 28(10), 1307-1314. http://dx.doi.org/10.1016/j.ijfatigue.2006.02.018.

185. Cao, Y., Shibata, S., & Fukumoto, I. (2006). Mechanical properties of biodegradable composites reinforced with bagasse fibre before and after alkali treatments. Composites Part A: Applied Science and Manufacturing, 37(3), 423-429. http://dx.doi.org/10.1016/j.compositesa.2005.05.045.

186. Guimarães, J. L., Wypych, F., Saul, C. K., Ramos, L. P., & Satynarayana, K. G. (2010). Studies of the processing and characterization of corn starch and its composites with banana and sugarcane fibers from Brazil. Carbohydrate Polymers, 80(1), 130-138. http://dx.doi.org/10.1016/j.carbpol.2009.11.002.

187. Gomes, A., Matsuo, T., Goda, K., & Ohgi, J. (2007). Development and effect of alkali treatment on tensile properties of curaua fiber green composites. Composites Part A: Applied Science and Manufacturing, 38(8), 1811-1820. http://dx.doi.org/10.1016/j.compositesa.2007.04.010.

188. Rosa, M. F., Chiou, B. S., Medeiros, E. S., Wood, D. F., Williams, T. G., Mattoso, L. H. C., Orts, W. J., & Imam, S. H. (2009). Effect of fiber treatments on tensile and thermal properties of starch/ethylene vinyl alcohol copolymers/coir biocomposites. Bioresource Technology, 100(21), 5196-5202. http://dx.doi.org/10.1016/j.biortech.2009.03.085. PMid:19560341

189. Kim, J. T., & Netravali, A. N. (2010). Mercerization of sisal fibers: effect of tension on mechanical properties of sisal fiber and fiber-reinforced composites. Composites Part A: Applied Science and Manufacturing, 41(9), 1245-1252. http://dx.doi.org/10.1016/j.compositesa.2010.05.007.

190. Ferraro, R. M., & Nanni, A. (2012). Effect of off-white rice husk ash on strength, porosity, conductivity and corrosion resistance of white concrete. Construction & Building Materials, 31, 220-225. http://dx.doi.org/10.1016/j.conbuildmat.2011.12.010.

191. Deepa, B., Abraham, E., Cherian, B. M., & Bismarch, A. (2011). Structure, morphology and thermal characteristics of banana nano fibers obtained by steam explosion. Bioresource Technology, 102(2), 1988-1997.

192. Huang, Z., Wang, N., Zhang, Y., Hu, H., & Luo, Y. (2012). Effect of mechanical activation pretreatment on the properties of sugarcane bagasse/poly(vinyl chloride) composites. Composites Part A: Applied Science and Manufacturing, 43(1), 114-120. http://dx.doi.org/10.1016/j.compositesa.2011.09.025.

193. Biron, M. (2007). Thermoplastics and thermoplastic composites: technical information for plastics users. Amsterdam: Butterwort-Heineman.

194. Callister, W. D., Jr. (2006). Fundamentos da ciência e engenharia de materiais: uma abordagem integrada. Rio de Janeiro: LTC.

195. Mark, J. E. (1999). Polymer data handbook. New York: Oxford University Press.

196. Pilato, L. (2010). Phenolic resins: a century of progress. New York: Springer. http://dx.doi.org/10.1007/978-3-642-04714-5.

197. Gupta, N., Ye, R., & Porfiri, M. (2010). Comparison of tensile and compressive characteristics of vinyl ester/glass microballoon syntactic foams. Composites Part B: Engineering, 41(3), 236-245. http://dx.doi.org/10.1016/j.compositesb.2009.07.004.

198. Silva, R. V., Ueki, M. M., Spinelli, D., Bose Filho, W. W., & Tarpani, J. R. (2010). Thermal, mechanical, and hygroscopic behavior of sisal fiber/polyurethane resin-based composites. Journal of Reinforced Plastics and Composites, 29(9), 1399-1417. http://dx.doi.org/10.1177/0731684409102986.

199. Canevarolo, S. V., Jr. (2004). Ciência dos polímeros: um texto básico para tecnólogos e engenheiros (1st rep.). São Paulo: Artliber Editora.

200. Borsoi, C., Scienza, L. C., Zattera, A. J., & Angrizani, C. C. (2011). Obtenção e caracterização de compósitos utilizando poliestireno como matriz e resíduos de fibras de algodão da indústria têxtil como reforço. Polímeros, 21(4), 271-279. http://dx.doi.org/10.1590/S0104-14282011005000055.

201. Grizzo, L. H., Hage, E. H., Jr., & Laurini, R. V. (2011). Desenvolvimento de PVC reforçado com fibras de vidro longas para fabricação de produtos moldados. Polímeros: Ciência e Tecnologia, 21(5), 369-375. http://dx.doi.org/10.1590/S0104-14282011005000065.

202. Silva, R. V., Spinelli, D., Bose Filho, W. W., Claro Neto, S., Chierice, G. O., & Tarpani, J. R. (2006). Fracture toughness of natural fibers/castor oil polyurethane composites. Composites Science and Technology, 66(10), 1328-1335. http://dx.doi.org/10.1016/j.compscitech.2005.10.012.

203. Melo, B. N., & Pasa, V. M. D. (2003). Composites based on eucalyptus tar pitch/castor oil polyurethane and short sisal fibers. Journal of Applied Polymer Science, 89(14), 3797-3802. http://dx.doi.org/10.1002/app.12424.

204. Miléo, P. C., Mulinari, D. R., Baptista, C. A. R. P., Rocha, G. J. M., & Gonçalves, A. R. (2011). Mechanical behaviour of polyurethane from castor oil reinforced sugarcane straw cellulose composites. Procedia Engineering, 10, 2068-2073. http://dx.doi.org/10.1016/j.proeng.2011.04.342.
588371b87f8c9d0a0c8b4a2a polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections