Polímeros: Ciência e Tecnologia
https://www.revistapolimeros.org.br/article/doi/10.1590/0104-1428.12216
Polímeros: Ciência e Tecnologia
Original Article

Preparation and characterization of composites from plastic waste and sugar cane fiber

Ricardo Yoshimitsu Miyahara; Fábio Luiz Melquiades; Ezequiel Ligowski; Andressa do Santos; Silvia Luciana Fávaro; Osmar dos Reis Antunes Junior

Downloads: 2
Views: 1149

Abstract

Abstract: This study presents the preparation and characterization of composite materials using Plastic Waste from Hydrapulper (PWH) from paper industries extruded with sugar cane fiber residues from ethanol industries. The factorial design showed that composite material with 40% of sugar cane fiber, pressed with 5 ton was the optimized condition. The main findings attested that the composite is resistant up to 250 °C and its hardness is increased compared to the raw PWH. The material presented woodsy aspect although water absorption has increased. So, this study offers a good alternative for the use of plastic waste generated as a by-product of recycled paper industry as well as a destination to the sugar cane bagasse.

Keywords

cane bagasse fiber, composite material, hidrapulper equipment, plastic waste, alternative material for wood

References

1 Lopez, J. P., Girones, J., Mendez, J. A., Puig, J., & Pelach, M. A. (2012). Recycling ability of biodegradable matrices and treis cellulo-reinforced composites in a plastic recycling stream. Journal of Polymers and the Environment, 20(1), 96-103. http://dx.doi.org/10.1007/s10924-011-0333-1.

2 Fávaro, S. L., Ganzerli, T. A., Carvalho, A. G. V. No, Silva, O. R. R. F., & Radovanovic, E. (2010). Chemical, morphological and mechanical analysis of sisal fiber-reinforced recycled high-density polyethylene composites. Express Polymer Letters, 4(8), 465-473. http://dx.doi.org/10.3144/expresspolymlett.2010.59.

3 Wang, W., Ji, B., Zhang, C., & Cao, X. (2016). New spin crossover polymeric composite and another way to describe the result. Inorganic Chemistry Communications , 67, 55-59. http://dx.doi.org/10.1016/j.inoche.2016.03.007.

4 Silva, A. L., Silva, L. R. R., Camargo, I. A., Agosttini, D. L. S., Rosa, D. S., Oliveira, D. L. V., Fechine, P. B. A., & Mazzetto, S. E. (2016). Cardanol-based thermoset plastic reinforced by sponge gourd fibers (Luffa cylindrica). Polímeros: Ciência e Tecnologia, 26, 21-29.

5 Spinacé, M. S., Janeiro, L. G., Bernardino, F. C., & Grossi, T., & Paoli, M. A. (2011). Poliolefinas reforçadas com fibras vegetais curtas: sisal × curauá. Polímeros: Ciência e Tecnologia, 21(3), 168-174.

6 Karakus, K., Birbilen, Y., & Mengeloğlu, F. (2016). Assessment of selected properties of LDPE composites reinforced with sugar beet pulp. Measurement, 88, 137-146. http://dx.doi.org/10.1016/j.measurement.2016.03.039.

7 El-Fattah, A. A., Demerdash, A. G. M., Alim Sadik, W. A., & Bedir, A. (2015). The effect of sugarcane bagasse fiber on the properties of recycled high density polyethylene. Journal of Composite Materials, 49(26), 3251-3262. http://dx.doi.org/10.1177/0021998314561484.

8 Taflick, T., Maich, E. G., Ferreira, L. D., Bica, C. I. D., Rodrigues, S. R. S., & Nachtigall, S. M. B. (2015). Acacia bark residues as filler in polypropylene composites. Polímeros: Ciência e Tecnologia, 25, 289-295. http://dx.doi.org/10.1590/0104-1428.1840.

9 Martins, R. R., Pires, A. T. N., Al-Qureshi, H. A., & Barra, G. M. O. (2008). Estudo da viabilidade de utilização de fibras naturais curtas em matrizes de resina epóxi. Matéria (Rio de Janeiro), 13(4), 605-610. http://dx.doi.org/10.1590/S1517-70762008000400005.

10 Rzatki, F. D., & Barra, G. M. O. (2014). Efeito da modificação de superfície de fibras nas propriedades mecânicas de compósitos a base de poli(tereftalato de butileno) reforçado por fibras naturais inorgânicas. Polímeros: Ciência e Tecnologia, 24(3), 344-350.

11 Thakur, V. K., & Thakur, M. K. (2014). Processing and characterization of natural celulose fibers/thermoset polymer composites. Carbohydrate Polymers, 109, 102-117. PMid:24815407. http://dx.doi.org/10.1016/j.carbpol.2014.03.039.

12 Ali, M., Liu, A., Sou, H., & Chouw, N. (2012). Mechanical and dynamic properties of coconut fibre reinforced concrete. Construction & Building Materials, 30, 814-825. http://dx.doi.org/10.1016/j.conbuildmat.2011.12.068.

13 Araujo, J. R., Adamo, C. B., Costa e Silva, M. V., & De Paoli, M.-A. (2013). Antistatic-reinforced biocomposites of polyamide-6 and polyaniline-coated curauá fibers prepared on a pilot plant scale. Polymer Composites, 34(7), 1081-1090. http://dx.doi.org/10.1002/pc.22516.

14 Siregar, J. P., Sapuan, S. M., Rahman, M. Z. A., & Zaman, H. M. D. K. (2010). The effect of alkali treatment on the mechanical properties of short pineapple leaf fibre (PALF) reinforced high impact polystyrene (HIPS) composites. Journal of Food, Agriculture & Environment, 8(2), 1103-1108.

15 Mattos, B. D., Misso, A. L., Cademartori, P. H. G., Lima, E. A., Magalhães, W. L. E., & Gatto, D. A. (2014). Properties of polypropylene composites filled with a mixture of household waste of mate-tea and wood particles. Construction & Building Materials , 61, 60-68. http://dx.doi.org/10.1016/j.conbuildmat.2014.02.022.

16 Saba, N., Jawaid, M., Alothman, O. Y., & Paridah, M. T. (2016). A review on dynamic mechanical properties of natural fibre reinforced polymer composites. Construction & Building Materials, 106, 149-159. http://dx.doi.org/10.1016/j.conbuildmat.2015.12.075.

17 Khorami, M., & Ganjian, E. (2011). Comparing flexural behaviour of fibre-cement composites reinforced bagasse: wheat and eucalyptus. Construction & Building Materials , 25(9), 3661-3667. http://dx.doi.org/10.1016/j.conbuildmat.2011.03.052.

18 Tewari, M., Singh, V. K., Gope, P. C., & Chaudhary, A. K. (2012). Evaluation of mechanical properties of bagasse-glass fiber reinforced composite. Journal of Materials and Environmental Science, 3, 171-184.

19 Moubarik, A., Grimi, N., & Boussetta, N. (2013). Structural and thermal characterization of Moroccan sugar cane bagasse cellulose fibers and their applications as a reinforcing agent in low density polyethylene. Composites. Part B, Engineering, 52, 233-238. http://dx.doi.org/10.1016/j.compositesb.2013.04.040.

20 Jacobsen, S. E., & Wyman, C. E. (2002). Xylose monomer and oligomer yields for uncatalyzed hydrolysis of sugarcane bagasse hemicelluloses at varying solids concentration. Industrial & Engineering Chemistry Research, 41(6), 1454-1461. http://dx.doi.org/10.1021/ie001025+.

21 Bruns, R., Scarminio, I. S., & Barros, B. B., No. (2006). Statistical design – chemometrics (Vol. 25). Amsterdam: Elsevier. (Data Handling in Science and Technology).

22 Heikkinen, J. M., Hordijik, J. C., Jong, W., & Spliethoff, H. (2004). Thermogravimetry as a tool to classify waste components to be used for energy generation. Journal of Analytical and Applied Pyrolysis, 71(2), 883-900. http://dx.doi.org/10.1016/j.jaap.2003.12.001.

23 Velásquez, J., Valencia, S., Rios, L., Restrepo, G., & Marín, J. (2012). Characterization and photocatalytic evaluation of polypropylene and polyethylene pellets coated with P25 TiO2 using the controlledtemperature embedding method. Chemical Engineering Journal, 203, 398-405. http://dx.doi.org/10.1016/j.cej.2012.07.068.

24 Sardot, T., Smith, G., & McDonald, A. G. (2012). Valorizing mixed plastic waste from cardboard recycling by amendment with wood, cement and ash. Journal of Reinforced Plastics and Composites, 31(21), 1488-1497. http://dx.doi.org/10.1177/0731684412459984.

25 Hatakeyama, T., & Quinn, F. X. (1999). Thermal analysis: fundamentals and applications to polymer science. Tokyo: Chichester J. Wiley.

26 Santos, M. L., Lima, O. J., Nassar, E. J., Ciuffi, K. J., & Calefi, O. S. (2011). Estudo das condições de estocagem do bagaço de cana-de-açúcar por análise térmica. Quimica Nova, 34(3), 507-511. http://dx.doi.org/10.1590/S0100-40422011000300024.

27 Caraschi, J. C., & Leão, A. L. (2002). Avaliação das propriedades mecânicas dos plásticos reciclados provenientes de resíduos sólidos urbanos. Acta Scientiarum, 24(6), 1599-1602.

28 Coutinho, F. M. B., Mello, I. L., & Santa Maria, L. C. (2003). Polietileno: principais tipos, propriedades e aplicações. Polímeros: Ciência e Tecnologia, 13(1), 1-3.

29 Milagres, E. G., Vital, B. R., Della, L. R. M., & Pimenta, A. S. (2006). Compósitos de partículas de madeira de Eucalyptus grandis, polipropileno e polietileno de alta e baixa densidades. Revista Árvore, 30(3), 463-470. http://dx.doi.org/10.1590/S0100-67622006000300017.

30 Hillig, E., Freire, E., Carvalho, G. A., Schneider, V. E., & Pocai, K. (2006). Moldagem de misturas na fabricação de compósitos polímero-fibra utilizando polietileno e serragem de pinus sp. Ciência Florestal , 16(3), 343-351. http://dx.doi.org/10.5902/198050981913.

31 Runzhou, H., Xinwu, X., Sunyoung, L., Yang, Z., Birm-June, K., & Qinglin, W. (2013). High Density Polyethylene composites reinforced with hybrid inorganic fillers: morphology, mechanical and thermal expansion performance. Matéria (Rio de Janeiro) , 6(9), 4122-4138. http://dx.doi.org/10.3390/ma6094122. PMid:28788322.

32 Rosário, F., Pachekoski, W. M., Silveira, A. P. J., Santos, S. F., Júnior, H. S., & Casarin, S. A. (2011). Resíduos de sisal como reforço em compósitos de polipropileno virgem e reciclado. Polímeros: Ciência e Tecnologia , 21(2), 90-97. http://dx.doi.org/10.1590/S0104-14282011005000021.

33 Bodzay, B., Fejos, M., Bocz, K., Told, A., Ronkay, F., & Marosi, G. (2012). Upgrading of recycled polypropylene by preparing flame retarded layered composite. Express Polymer Letters Journal, 6(11), 895-902. http://dx.doi.org/10.3144/expresspolymlett.2012.95.

34 Becker, D., Balzer, A. K. P., & Soldi, V. (2011). Influência da sequência de mistura do PP-MA nas propriedades dos compósitos de PP e fibra de bananeira. Polímeros: Ciência e Tecnologia, 21(1), 7-12. http://dx.doi.org/10.1590/S0104-14282011005000012.

35 Vick. (2016). Polipropileno. Retrieved in 2016, January 15, from http://www.vick.com.br/vick/novo/datasheets/datasheet-polipropileno-pp-nit.pdf

36 Mahendrasinh, M. R., Hemul, V. P., Lata, M. R., & Naynika, K. P. (2013). Studies on mechanical properties of recycled polypropylene blended with virgin polypropylene. International Journal of Zoological Research, 2(3), 194-203.

37 Strapasson, R., Amico, S. C., Pereira, M. F. R., & Sydenstricker, T. H. D. (2005). Tensile and impact behavior of polypropylene/low density polyethylene blends. Polymer Testing, 24(4), 468-473. http://dx.doi.org/10.1016/j.polymertesting.2005.01.001.

38 Spinacé, M. A. S., Janeiro, L. G., Bernardino, F. C., Grossi, T. A. & De Paoli, M. A. (2011). Poliolefinas reforçadas com fibras vegetais curtas: Sisal Vs. Curauá. Polímeros: Ciência e Tecnologia, 21(3), 168-174.

39 Mengeloglu, F., & Karakus, K. (2008). Thermal degradation mechanical properties and morphology of wheat straw flour filled recycled thermoplastic composites. Sensors (Basel), 8(1), 500-519. http://dx.doi.org/10.3390/s8010500. PMid:27879719.

40 Albinante, S. R., Pacheco, E., Visconte, L., Platenik, G., Batista, L. N. (2014). Modification of brazilian natural fibers from banana's tree to apply as fillers into polymers composites. Chemical Engineering Transactions, 37, 715-720. http://dx.doi.org/10.3303/cet1437120.

41 Siregar, J. P., Sapuan, S. M., Rahman, M. Z. A., & Zaman, H. M. D. K. (2010). The effect of alkali treatment on the mechanical properties of short pineapple leaf fibre (PALF) reinforced high impact polystyrene (HIPS) composites. Journal of Food Agriculture and Environment , 8, 1103-1108.

42 Li, X., Lei, B., Lin, Z., Huang, L., Tan, S., & Cai, X. (2014). The utilization of bamboo charcoal enhances wood plastic composites with excelent mechanical and termal properties. Materials & Design, 53, 419-424. http://dx.doi.org/10.1016/j.matdes.2013.07.028.

43 Yeh, S. K., Kim, K. J., & Gupta, R. K. (2012). Synergistic effect of coupling agents on polypropylene-based wood-plastic composites. Journal of Applied Polymer Science, 27, 1047-1053. http://dx.doi.org/10.1002/app.37775.

44 Thakur, M. K., Gupta, R. K., & Thakur, V. K. (2014). Surface modification of cellulose using silane coupling agent. Carbohydrate Polymers, 111, 849-855. PMid:25037424. http://dx.doi.org/10.1016/j.carbpol.2014.05.041.

45 Thakur, V. K., Singha, A. S., & Thakur, M. K. (2012). Surface modification of natural polymers to impart low water absorbency. International Journal of Polymer Analysis and Characterization , 17(2), 133-143. http://dx.doi.org/10.1080/1023666X.2012.640455.
 

5b7c5f770e88251015896e58 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections