Polímeros: Ciência e Tecnologia
https://www.revistapolimeros.org.br/article/doi/10.1590/0104-1428.09720
Polímeros: Ciência e Tecnologia
Original Article

Potential of calcium carbonate as secondary filler in eggshell powder filled recycled polystyrene composites

Nabil Hayeemasae; Hanafi Ismail

Downloads: 0
Views: 545

Abstract

Recycling of plastic waste is considered a key intention in regards to the continuous growth of plastic industry. In this work, new composite based on recycled polystyrene (R-PS) was prepared in the presence of eggshell powder (ESP). This was to make a value-added plastic material based on polystyrene. To further extend its performance, calcium carbonate (CaCO3) was used as secondary filler to optimize its performance. It is observed that the stabilization torque of composites decreased with increasing the weight percent of CaCO3. Increasing the amount of CaCO3 has increased the mechanical properties such as Young’s modulus, tensile strength, elongation at break and impact strength of the composites. These findings corresponded well to SEM images. It revealed homogenous dispersions of CaCO3 throughout R-PS matrix in comparison to ESP alone which formed agglomerations in R-PS matrix. Further evidence on thermal stability has confirmed that CaCO3 provided better heat resistance over the ESP.

Keywords

polystyrene, calcium carbonate, eggshell powder, composites

References

1 Pimentel, T. A. P. F., Durães, J. A., Drummond, A. L., Schlemmer, D., Falcão, R., & Sales, M. J. A. (2007). Preparation and characterization of blends of recycled polystyrene with cassava starch. Journal of Materials Science, 42(17), 7530-7536. http://dx.doi.org/10.1007/s10853-007-1622-x.

2 Gutiérrez, C., García, M. T., Gracia, I., de Lucas, A., & Rodríguez, J. F. (2012). Recycling of extruded polystyrene wastes by dissolution and supercritical CO2 technology. Journal of Material Cycles and Waste Management, 14, 308-316. http://dx.doi.org/10.1007/s10163-012-0074-9.

3 Borsoi, C., Scienza, L. C., & Zattera, A. J. (2013). Characterization of composites based on recycled expanded polystyrene reinforced with curaua fibers. Journal of Applied Polymer Science, 128(1), 653-659. http://dx.doi.org/10.1002/app.38236.

4 Lisperguer, J., Bustos, X., & Saravia, Y. (2011). Thermal and mechanical properties of wood flour-polystyrene blends from postconsumer plastic waste. Journal of Applied Polymer Science, 119(1), 443-451. http://dx.doi.org/10.1002/app.32638.

5 Poletto, M., Dettenborn, J., Zeni, M., & Zattera, A. J. (2011). Characterization of composites based on expanded polystyrene wastes and wood flour. Waste Management (New York, N.Y.), 31(4), 779-784. http://dx.doi.org/10.1016/j.wasman.2010.10.027. PMid:21172732.

6 Kourki, H., Famili, M. H. N., Mortezaei, M., & Malekipirbazari, M. (2018). Mixing challenges for SiO2/polystyrene nanocomposites. Journal of Thermoplastic Composite Materials, 31(5), 709-726. http://dx.doi.org/10.1177/0892705717718599.

7 Chan, C.-M., Wu, J., Li, J.-X., & Cheung, Y.-K. (2002). Polypropylene/calcium carbonate nanocomposites. Polymer, 43(10), 2981-2992. http://dx.doi.org/10.1016/S0032-3861(02)00120-9.

8 Bartczak, Z., Argon, A. S., Cohen, R. E., & Weinberg, M. (1999). Toughness mechanism in semi-crystalline polymer blends: II. High-density polyethylene toughened with calcium carbonate filler particles. Polymer, 40(9), 2347-2365. http://dx.doi.org/10.1016/S0032-3861(98)00444-3.

9 Suetsugu, Y., & White, J. L. (1983). The influence of particle size and surface coating of calcium carbonate on the rheological properties of its suspensions in molten polystyrene. Journal of Applied Polymer Science, 28(4), 1481-1501. http://dx.doi.org/10.1002/app.1983.070280421.

10 Ghabeer, T., Dweiri, R., & Al-Khateeb, S. (2013). Thermal and mechanical characterization of polypropylene/eggshell biocomposites. Journal of Reinforced Plastics and Composites, 32(6), 402-409. http://dx.doi.org/10.1177/0731684412470015.

11 Sutapun, W., Pakdeechote, P., Suppakarn, N., & Ruksakulpiwat, Y. (2013). Application of Calcined Eggshell Powder as Functional Filler for High Density Polyethylene. Polymer-Plastics Technology and Engineering, 52(10), 1025-1033. http://dx.doi.org/10.1080/03602559.2013.769578.

12 Toro, P., Quijada, R., Arias, J. L., & Yazdani‐Pedram, M. (2007). Mechanical and morphological studies of poly(propylene)-filled eggshell composites. Macromolecular Materials and Engineering, 292(9), 1027-1034. http://dx.doi.org/10.1002/mame.200700147.

13 Feng, Y., Ashok, B., Madhukar, K., Zhang, J., Zhang, J., Reddy, K. O., & Rajulu, A. V. (2014). Preparation and Characterization of Polypropylene Carbonate Bio-Filler (Eggshell Powder) Composite Films. International Journal of Polymer Analysis and Characterization, 19(7), 637-647. http://dx.doi.org/10.1080/1023666X.2014.953747.

14 Halimatudahliana, A., Ismail, H., & Nasir, M. (2002). Morphological studies of uncompatibilized and compatibilized polystyrene/polypropylene blend. Polymer Testing, 21(3), 263-267. http://dx.doi.org/10.1016/S0142-9418(01)00079-4.

15 Gallagher, L. W., & McDonald, A. G. (2013). The effect of micron sized wood fibers in wood plastic composites. Maderas. Ciencia y Tecnología, 15(ahead), 357-374. http://dx.doi.org/10.4067/S0718-221X2013005000028.

16 Sarifuddin, N., & Ismail, H. (2013). Comparative study on the effect of Bentonite or Feldspar Filled Low-Density Polyethylene/Thermoplastic Sago Starch/Kenaf Core Fiber Composites. BioResources, 8(3), 4238-4257. http://dx.doi.org/10.15376/biores.8.3.4238-4257.

17 Toro, P., Quijada, R., Yazdani-Pedram, M., & Arias, J. L. (2007). Eggshell, a new bio-filler for polypropylene composites. Materials Letters, 61(22), 4347-4350. http://dx.doi.org/10.1016/j.matlet.2007.01.102.

18 Tanaka, H., & White, J. L. (1980). Experimental investigations of shear and elongational flow properties of polystyrene melts reinforced with calcium carbonate, titanium dioxide, and carbon black. Polymer Engineering and Science, 20(14), 949-956. http://dx.doi.org/10.1002/pen.760201406.

19 Ismail, H., Awang, M., & Hazizan, M. A. (2006). Effect of waste tire dust (WTD) size on the mechanical and morphological properties of polypropylene/waste tire dust (PP/WTD) blends. Polymer-Plastics Technology and Engineering, 45(4), 463-468. http://dx.doi.org/10.1080/03602550600553739.

20 Fu, S. Y., Feng, X. Q., Lauke, B., & Mai, Y.-W. (2008). Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate-polymer composites. Composites. Part B, Engineering, 39(6), 933-961. http://dx.doi.org/10.1016/j.compositesb.2008.01.002.

21 Bashir, A. S. M., & Manusamy, Y. (2015). Recent Developments in Biocomposites Reinforced with Natural Biofillers from Food Waste. Polymer-Plastics Technology and Engineering, 54(1), 87-99. http://dx.doi.org/10.1080/03602559.2014.935419.

22 Siriwardena, S., Ismail, H., & Ishiaku, U. S. (2000). Effect of mixing sequence in the preparation of white rice husk ash filled polypropylene/ethylene-propylene-diene monomer blend. Polymer Testing, 20(1), 105-113. http://dx.doi.org/10.1016/S0142-9418(00)00008-8.

23 Nabil, H., & Ismail, H. (2014). Enhancing the thermal stability of natural rubber/recycled ethylene-propylene-diene rubber blends by means of introducing pre-vulcanised ethylene-propylene-diene rubber and electron beam irradiation. Materials & Design, 56, 1057-1067. http://dx.doi.org/10.1016/j.matdes.2013.12.020.
 

6151c946a9539540c35f2912 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections