Polímeros: Ciência e Tecnologia
https://www.revistapolimeros.org.br/article/doi/10.1590/0104-1428.09620
Polímeros: Ciência e Tecnologia
Original Article

Extraction and characterization of nanofibrillated cellulose from yacon plant (Smallanthus sonchifolius) stems

Romaildo Santos de Sousa; Alan Sulato de Andrade; Maria Lucia Masson

Downloads: 0
Views: 558

Abstract

This study aimed to evaluate the process of cellulose extraction from yacon stem using combined pulping and bleaching processes to produce nanofibrillated cellulose (NFC). First, a chemical pulping process with NaOH was applied and, subsequently, the pulp obtained was bleached. From the chemical pulp (CP) bleached, NFC was obtained by the mechanical defibrillation in a colloidal grinder. Then, chemical composition, and infrared analysis of the pulps were performed. The pulping process showed a lower amount of extractives and lignin content, as a low yield and an excessively dark pulp. The CP bleached with NaClO2 showed the best results increased whiteness of the pulp. A suspension of NFC with fibers of 5-60 nm in diameter, high crystallinity index, and thermal stability was obtained. The results are promising and demonstrate the technical feasibility of obtaining NFC from yacon stems waste which is ideal to apply to other materials of the industry.

Keywords

biopolymers, bleaching, nanotechnology, chemical process, lignocellulosic biomass

References

1 Food and Agriculture Organization – FAO. (2012). Yacon (Smallanthus sonchifolius [Poeppig & Endlicher] H. Robinson). Rome: FAO. Retrieved in 2020, May 12, from http://www.fao.org/tempref/codex/Meetings/CCLAC/cclac18/la18_15e.pdf

2 Fernández, E. C., Viehmannová, I., Lachman, J., & Milella, L. (2006). Yacon [Smallanthus sonchifolius (Poeppig & Endlicher) H. Robinson]: a new cropin the Central Europe – Information. Plant, Soil and Environment, 52(12), 564-570. http://dx.doi.org/10.17221/3548-PSE.

3 Kamp, L., Hartung, J., Mast, B., & Graeff-Hönninger, S. (2019). Plant growth, tuber yield formation and costs of three different propagation methods of yacon (Smallanthus sonchifolius). Industrial Crops and Products, 132, 1-11. http://dx.doi.org/10.1016/j.indcrop.2019.02.006.

4 Vilhena, S. M. C., Câmara, F. L. A., & Kakihara, S. T. (2000). The yacon cultivation in Brazil. Horticultura Brasileira, 18(1), 5-8. http://dx.doi.org/10.1590/S0102-05362000000100002.

5 Lachman, J., Fernández, E. C., & Orsák, M. (2003). Yacon [Smallanthus sonchifolia (Poepp. et Endl.) H. Robinson] chemical composition and use: a review. Plant, Soil and Environment, 49(6), 283-290. http://dx.doi.org/10.17221/4126-PSE.

6 Shin, D. Y., Hyun, K. H., Kuk, Y., Shin, D. W., & Kim, H. W. (2017). Antibiotic effect of leaf, stem, and root extracts in Smallanthus sonchifolius H. Robinson. Korean Journal of Plant Resources, 30(3), 311-317. http://dx.doi.org/10.7732/kjpr.2017.30.3.311.

7 Valentová, K., & Ulrichová, J. (2003). Smallanthus sonchifolius and Lepidium meyenii - prospective Andean crops for the prevention of chronic diseases. Biomedical Papers, 147(2), 119-130. http://dx.doi.org/10.5507/bp.2003.017. PMid:15037892.

8 Xu, J. T., & Chen, X. Q. (2019). Preparation and characterization of spherical cellulose nanocrystals with high purity by the composite enzymolysis of pulp fibers. Bioresource Technology, 291, 121842. http://dx.doi.org/10.1016/j.biortech.2019.121842. PMid:31377505.

9 Zhu, Y., Romain, C., & Williams, C. K. (2016). Sustainable polymers from renewable resources. Nature, 540(7633), 354-362. http://dx.doi.org/10.1038/nature21001. PMid:27974763.

10 Athinarayanan, J., Alshatwi, A. A., & Subbarayan Periasamy, V. (2020). Biocompatibility analysis of Borassus flabellifer biomass-derived nanofibrillated cellulose. Carbohydrate Polymers, 235, 115961. http://dx.doi.org/10.1016/j.carbpol.2020.115961. PMid:32122496.

11 Behzad, T., & Ahmadi, M. (2016). Nanofibers. In M. M. Rahman & A. M. Asiri (Eds.), Nanofiber research: reaching new heights crystalline (pp. 13-28). Rijeka, Croatia: InTech. http://dx.doi.org/10.5772/63704.

12 Rojas, J., Bedoya, M., & Ciro, Y. (2015). Current trends in the production of cellulose nanoparticles and nanocomposites for biomedical applications. In M. Poletto (Ed.), Cellulose: fundamental aspects and current trends (pp. 193-228). London: IntechOpen. http://dx.doi.org/10.5772/61334.

13 Lavoratti, A., Scienza, L. C., & Zattera, A. J. (2016). Dynamic-mechanical and thermomechanical properties of cellulose nanofiber/polyester resin composites. Carbohydrate Polymers, 136, 955-963. http://dx.doi.org/10.1016/j.carbpol.2015.10.008. PMid:26572434.

14 Abdul Khalil, H. P. S., Hossain, M. S., Rosamah, E., Nik Norulaini, N. A., Leh, C. P., Asniza, M., Davoudpour, Y., & Zaidul, I. S. M. (2014). High-pressure enzymatic hydrolysis to reveal physicochemical and thermal properties of bamboo fiber using a supercritical water fermenter. BioResources, 9(4), 7710-7720. http://dx.doi.org/10.1016/j.biortech.2007.04.029.

15 Gonzalez, R., Jameel, H., Chang, H. M., Treasure, T., Pirraglia, A., & Saloni, D. (2011). Thermo-mechanical pulping as a pretreatment for agricultural biomass for biochemical conversion. BioResources, 6(2), 1599-1614. http://dx.doi.org/10.15376/biores.6.2.1599-1614.

16 Abdul Khalil, H. P. S., Davoudpour, Y., Saurabh, C. K., Hossain, M. S., Adnan, A. S., Dungani, R., Paridah, M. T., Islam Sarker, M. Z., Fazita, M. R. N., Syakir, M. I., & Haafiz, M. K. M. (2016). A review on nanocellulosic fibres as new material for sustainable packaging: process and applications. Renewable & Sustainable Energy Reviews, 64, 823-836. http://dx.doi.org/10.1016/j.rser.2016.06.072.

17 Someshwar, A. V., & Pinkerfon, J. E. (1992). Wood processing industry. In A. J. Buonicore & W. T. Davis (Eds.), Air pollution engineering manual (p. 844). New York: Van Nostrand Reinhold.

18 Ferrer, A., Filpponen, I., Rodríguez, A., Laine, J., & Rojas, O. J. (2012). Valorization of residual Empty Palm Fruit Bunch Fibers (EPFBF) by microfluidization: production of nanofibrillated cellulose and EPFBF nanopaper. Bioresource Technology, 125, 249-255. http://dx.doi.org/10.1016/j.biortech.2012.08.108. PMid:23026341.

19 Balea, A., Merayo, N., De La Fuente, E., Negro, C., & Blanco, Á. (2017). Assessing the influence of refining, bleaching and TEMPO-mediated oxidation on the production of more sustainable cellulose nanofibers and their application as paper additives. Industrial Crops and Products, 97, 374-387. http://dx.doi.org/10.1016/j.indcrop.2016.12.050.

20 Berglund, L., Noël, M., Aitomäki, Y., Öman, T., & Oksman, K. (2016). Production potential of cellulose nanofibers from industrial residues: efficiency and nanofiber characteristics. Industrial Crops and Products, 92, 84-92. http://dx.doi.org/10.1016/j.indcrop.2016.08.003.

21 Cara, C., Ruiz, E., Ballesteros, I., Negro, M. J., & Castro, E. (2006). Enhanced enzymatic hydrolysis of olive tree wood by steam explosion and alkaline peroxide delignification. Process Biochemistry, 41(2), 423-429. http://dx.doi.org/10.1016/j.procbio.2005.07.007.

22 Siró, I., & Plackett, D. (2010). Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose, 17(3), 459-494. http://dx.doi.org/10.1007/s10570-010-9405-y.

23 Spence, K. L., Venditti, R. A., Rojas, O. J., Habibi, Y., & Pawlak, J. J. (2011). A comparative study of energy consumption and physical properties of microfibrillated cellulose produced by different processing methods. Cellulose, 18(4), 1097-1111. http://dx.doi.org/10.1007/s10570-011-9533-z.

24 Iwamoto, S., Abe, K., & Yano, H. (2008). The effect of hemicelluloses on wood pulp nanofibrillation and nanofiber network characteristics. Biomacromolecules, 9(3), 1022-1026. http://dx.doi.org/10.1021/bm701157n. PMid:18247566.

25 Boufi, S., & Chaker, A. (2016). Easy production of cellulose nanofibrils from corn stalk by a conventional high speed blender. Industrial Crops and Products, 93, 39-47. http://dx.doi.org/10.1016/j.indcrop.2016.05.030.

26 Technical Association of the Pulp and Paper Industry – TAPPI. (1999). T 264-om97: Preparation of wood for chemical analysis. Atlanta: TAPPI.

27 Technical Association of the Pulp and Paper Industry – TAPPI. (2012). T 257-cm02: Sampling and preparing wood for analysis. Atlanta: TAPPI.

28 Fortunati, E., Luzi, F., Jiménez, A., Gopakumar, D. A., Puglia, D., Thomas, S., Kenny, J. M., Chiralt, A., & Torre, L. (2016). Revalorization of sunflower stalks as novel sources of cellulose nanofibrils and nanocrystals and their effect on wheat gluten bionanocomposite properties. Carbohydrate Polymers, 149, 357-368. http://dx.doi.org/10.1016/j.carbpol.2016.04.120. PMid:27261760.

29 Technical Association of the Pulp and Paper Industry – TAPPI. (1997). T 204-om97: solvent extractives of wood and pulp. Atlanta: TAPPI.

30 Technical Association of the Pulp and Paper Industry – TAPPI. (1999). T 222-om02: acid-insoluble lignin in wood and pulp. Atlanta: TAPPI.

31 Besbes, I., Alila, S., & Boufi, S. (2011). Nanofibrillated cellulose from TEMPO-oxidized eucalyptus fibres: effect of the carboxyl content. Carbohydrate Polymers, 84(3), 975-983. http://dx.doi.org/10.1016/j.carbpol.2010.12.052.

32 Oliveira, J. P., Bruni, G. P., Lima, K. O., Halal, S. L. M. E., Rosa, G. S., Dias, A. R. G., & Zavareze, E. R. (2017). Cellulose fibers extracted from rice and oat husks and their application in hydrogel. Food Chemistry, 221, 153-160. http://dx.doi.org/10.1016/j.foodchem.2016.10.048. PMid:27979125.

33 Xie, J., Hse, C. Y., De Hoop, C. F., Hu, T., Qi, J., & Shupe, T. F. (2016). Isolation and characterization of cellulose nanofibers from bamboo using microwave liquefaction combined with chemical treatment and ultrasonication. Carbohydrate Polymers, 151, 725-734. http://dx.doi.org/10.1016/j.carbpol.2016.06.011. PMid:27474619.

34 Segal, L., Creely, J. J., Martin, A. E., Jr., & Conrad, C. M. (1959). An empirical method for estimating the degree of crystallinity of native cellulose using the X-Ray diffractometer. Textile Research Journal, 29(10), 786-794. http://dx.doi.org/10.1177/004051755902901003.

35 Akpinar, O., Levent, O., Sabanci, S., Uysal, R. S., & Sapci, B. (2011). Optimization and comparison of dilute acid pretreatment of selected agricultural residues for recovery of xylose. BioResources, 6(4), 4103-4116. http://dx.doi.org/10.15376/biores.6.4.4103-4116.

36 Yuan, Z., Kapu, N. S., Beatson, R., Chang, X. F., & Martinez, D. M. (2016). Effect of alkaline pre-extraction of hemicelluloses and silica on kraft pulping of bamboo (Neosinocalamus affinis Keng. Industrial Crops and Products, 91, 66-75. http://dx.doi.org/10.1016/j.indcrop.2016.06.019.

37 Geng, W., Narron, R., Jiang, X., Pawlak, J. J., Chang, H., Park, S., Jameel, H., & Venditti, R. A. (2019). The influence of lignin content and structure on hemicellulose alkaline extraction for non-wood and hardwood lignocellulosic biomass. Cellulose, 26(5), 3219-3230. http://dx.doi.org/10.1007/s10570-019-02261-y.

38 Cao, Y., Jiang, Y., Song, Y., Cao, S., Miao, M., Feng, X., Fang, J., & Shi, L. (2015). Combined bleaching and hydrolysis for isolation of cellulose nanofibrils from waste sackcloth. Carbohydrate Polymers, 131, 152-158. http://dx.doi.org/10.1016/j.carbpol.2015.05.063. PMid:26256171.

39 Peng, B., Zhang, H., & Zhang, Y. (2019). Investigation of the relationship between functional groups evolution and combustion kinetics of microcrystalline cellulose using in situ DRIFTS. Fuel, 248(1), 56-64. http://dx.doi.org/10.1016/j.fuel.2019.03.069.

40 Pastore, T. C. M., Oliveira, C. C. K., Rubim, J. C., & Santos, K. D. O. (2008). Effect of artificial weathering on tropical woods monitored by infrared spectroscopy (DRIFT). Química Nova, 31(8), 2071-2075. http://dx.doi.org/10.1590/S0100-40422008000800030.

41 Fiore, V., Scalici, T., & Valenza, A. (2014). Characterization of a new natural fiber from Arundo donax L. as potential reinforcement of polymer composites. Carbohydrate Polymers, 106(1), 77-83. http://dx.doi.org/10.1016/j.carbpol.2014.02.016. PMid:24721053.

42 Morán, J. I., Alvarez, V. A., Cyras, V. P., & Vázquez, A. (2008). Extraction of cellulose and preparation of nanocellulose from sisal fibers. Cellulose, 15(1), 149-159. http://dx.doi.org/10.1007/s10570-007-9145-9.

43 Orue, A., Eceiza, A., & Arbelaiz, A. (2017). Pretreatments of natural fibers for polymer composite materials. In. S. Kalia (Ed.), Lignocellulosic composite materials (Springer Series on Polymer and Composite Materials, pp. 137-175). Spain: Springer. https://doi.org/10.1007/978-3-319-68696-7_3.

44 Mascarenhas, M., Dighton, J., & Arbuckle, G. A. (2000). Characterization of plant carbohydrates and changes in leaf carbohydrate chemistry due to chemical and enzymatic degradation measured by microscopic ATR FT-IR spectroscopy. Applied Spectroscopy, 54(5), 681-686. http://dx.doi.org/10.1366/0003702001950166.

45 Alemdar, A., & Sain, M. (2008). Isolation and characterization of nanofibers from agricultural residues: wheat straw and soy hulls. Bioresource Technology, 99(6), 1664-1671. http://dx.doi.org/10.1016/j.biortech.2007.04.029. PMid:17566731.

46 Sarasini, F. (2018). Mechanical and thermal properties of less common natural fibres and their composites. In. S. Kalia (Ed.), Lignocellulosic composite materials (Springer Series on Polymer and Composite Materials, pp. 177-213). Spain: Springer. http://dx.doi.org/10.1007/978-3-319-68696-7_4.

47 Dufresne, A. (2019). Nanocellulose processing properties and potential applications. Current Forestry Reports, 5(2), 76-89. http://dx.doi.org/10.1007/s40725-019-00088-1.

48 Lengowski, E. C., Magalhães, W. L. E., Nisgoski, S., Muniz, G. I. B., Satyanarayana, K. G., & Lazzarotto, M. (2016). New and improved method of investigation using thermal tools for characterization of cellulose from eucalypts pulp. Thermochimica Acta, 638, 44-51. http://dx.doi.org/10.1016/j.tca.2016.06.010.

49 Khenblouche, A., Bechki, D., Gouamid, M., Charradi, K., Segni, L., Hadjadj, M., & Boughali, S. (2019). Extraction and characterization of cellulose microfibers from Retama raetam stems. Polímeros: Ciência e Tecnologia, 29(1), e2019011. http://dx.doi.org/10.1590/0104-1428.05218.
 

61a521c1a953953c636a2564 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections