Polímeros: Ciência e Tecnologia
https://www.revistapolimeros.org.br/article/doi/10.1590/0104-1428.09217
Polímeros: Ciência e Tecnologia
Original Article

Evaluation of hydrolytic degradation of bionanocomposites through fourier transform infrared spectroscopy

Raquel do Nascimento Silva; Thainá Araújo de Oliveira; Isaias Damasceno da Conceição; Luis Miguel Araque; Tatianny Soares Alves; Renata Barbosa

Downloads: 1
Views: 1222

Abstract

Abstract: Studies about in vitro biodegradation of polymers have grown considerably due to the wide application of biodegradable polymers in biomedical areas. The objective of this study was to prepare bionanocomposites films of PHB, PEG, and organoclays by solution intercalation, and to evaluate the morphology, structure, hydrolytic degradation through FTIR and the calculation of carbonyl content. The results showed that bionanocomposites displayed intermediated dispersion of the filler, the polymer chains were intercalated into the organoclay layers and was observed some degree of exfoliation. There was an influence of PEG and of the clay on the degradation of the polymer, this fact was observed due to the decrease in the intensity of PHB carbonyl band in the region around 1275 cm-1, affecting the amorphous and crystalline regions of the polymer. This reduction can be associated with the increase in hydrophilicity of the polymer caused by the presence of the PEG and clay, suggesting the possibility of increasing the biodegradability of the pure polymer. In future research, there will be made characterizations to know if these materials can be used in medical devices.

Keywords

biodegradation, bionanocomposites, hydrolytic degradation, polyhydroxybutyrate

References

Rhim, J. W., Park, H. M., & Ha, C. S. (2013). Bio-nanocomposites for food packaging applications. Progress in Polymer Science, 38(10), 1629-1652. http://dx.doi.org/10.1016/j.progpolymsci.2013.05.008.

De Paula, E. L., Mano, V., & Pereira, F. V. (2011). Influence of cellulose nanowhiskers on the hydrolytic degradation behavior of poly (d, l-lactide). Polymer Degradation & Stability, 96(9), 1631-1638. http://dx.doi.org/10.1016/j.polymdegradstab.2011.06.006.

Quental, A. C., Carvalho, F. P. D., Tada, E. D. S., & Felisberti, M. I. (2010). Blendas de PHB e seus copolimeros: miscibilidade e compatibilidade. Quimica Nova , 33(2), 438-446. http://dx.doi.org/10.1590/S0100-40422010000200035.

Brito, G. F., Agrawal, P., Araujo, E. M., & Melo, T. J. A. (2011). Biopolimeros, polimeros biodegradaveis e polimeros verdes. Revista Eletrônica de Materiais e Processos , 6(2), 127-139. Retrieved in 2017, February 20, from http://www2.ufcg.edu.br/revistaremap/index.php/REMAP/article/view/222/204.

Reis, D. C. C., Oliveira, T. A., Carvalho, L. H., Alves, T. S., & Barbosa, R. (2016). The influence of natural Clay and organoclay vermiculite on the formation processo of bionanocomposites with poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Revista Materia , 22(4), e-11886. http://dx.doi.org/10.1590/s1517-707620170004.0220.

Reis, D. C. C., Oliveira, T. A., Carvalho, L. H., Alves, T. S., Barbosa, R. Biodegradability of and interaction in the packaging of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)-vermiculite bionanocomposites. Applied Polymer Science, 134(15), 1-9. http://dx.doi.org/10.1002/app.44700.

Machado, M. L., Pereira, N. C., Miranda, L. F. D., Terence, M. C., & Pradella, J. G. (2010). Estudo das propriedades mecanicas e termicas do polimero poli-3-hidroxibutirato (PHB) e de compositos PHB/po de madeira. Polímeros: Ciência e Tecnologia , 20(1), 65-71. http://dx.doi.org/10.1590/S0104-14282010005000011.

Puglia, D., Fortunati, E., D’amico, D. A., Manfredi, L. B., Cyras, V. P., & Kenny, J. M. (2014). Influence of organically modified clays on the properties and disintegrability in compost of solution cast poly (3-hydroxybutyrate) films. Polymer Degradation & Stability, 99, 127-135. http://dx.doi.org/10.1016/j.polymdegradstab.2013.11.013.

Cao, Z., & Jiang, S. (2012). Super-hydrophilic zwitterionic poly (carboxybetaine) and amphiphilic non-ionic poly (ethylene glycol) for stealth nanoparticles. Nano Today, 7(5), 404-413. http://dx.doi.org/10.1016/j.nantod.2012.08.001.

Ko, P. T., Lee, I. C., Chen, M. C., & Tsai, S. W. (2015). Polymer microneedles fabricated from PCL and PCL/PEG blends for transdermal delivery of hydrophilic compounds. Journal of the Taiwan Institute of Chemical Engineers, 51, 1-8. http://dx.doi.org/10.1016/j.jtice.2015.01.003.

Parra, D. F., Fusaro, J., Gaboardi, F., & Rosa, D. S. (2006). Influence of poly(ethylene glycol) on the thermal, mechanical, morphological, physical–chemical and biodegradation properties of poly (3-hydroxybutyrate). Polymer Degradation & Stability , 91(9), 1954-1959. http://dx.doi.org/10.1016/j.polymdegradstab.2006.02.008.

Laycock, B., Nikolic, M., Colwell, J. M., Gauthier, E., Halley, P., Bottle, S., & George, G. (2017). Lifetime prediction of biodegradable polymers. Progress in Polymer Science, 71, 144-189. http://dx.doi.org/10.1016/j.progpolymsci.2017.02.004.

Ginjupalli, K., Shavi, G. V., Averineni, R. K., Bhat, M., Udupa, N., & Nagaraja Upadhya, P. (2017). Poly(-hydroxy acid) based polymers: A review on material and degradation aspects. Polymer Degradation & Stability, 144, 520-535. http://dx.doi.org/10.1016/j.polymdegradstab.2017.08.024.

Barbosa, R., Araújo, E. M., Oliveira, A. D., & Melo, T. J. A. (2006). Efeito de sais quaternários de amônio na organofilizacao de uma argila bentonita nacional. Cerâmica, 52(324), 264-268. http://dx.doi.org/10.1590/S0366-69132006000400009.

Mesquita, P. J. P., Araujo, R. D. J., Carvalho, L. H., Alves, T. S., & Barbosa, R. (2016). Thermal evaluation of PHB/PP‐g‐MA blends and PHB/PP‐g‐MA/vermiculite bionanocomposites after biodegradation test. Polymer Engineering and Science , 56(5), 555-560. http://dx.doi.org/10.1002/pen.24279.

American Society for Testing and Materials – ASTM. (2010). ASTM F1635-11: standard test method for in vitro degradation testing of hydrolytically degradable polymer resins and fabricated forms for surgical implants. West Conshohocken: ASTM.

Mesquita, P. J. P., Araujo, R. D. J., Andrade, D. L. A. C. S., Carvalho, L. H., Alves, T. S., & Barbosa, R. (2016). Evaluation of biodegradation of PHB/PP-g-MA/vermiculite bionanocomposites. Materials Science Forum, 869, 289-302. https://doi.org/10.4028/www.scientific.net/MSF.869.298.

Crétois, R., Follain, N., Dargent, E., Soulestin, J., Bourbigot, S., Marais, S., & Lebrun, L. (2014). Microstructure and barrier properties of PHBV/organoclays bionanocomposites. Journal of Membrane Science, 467, 56-66. http://dx.doi.org/10.1016/j.memsci.2014.05.015.

Silva, R. M., Conceicao, I. D., & Silva, J. E., Alves, T. S., & Barbosa, R. (2016). Characterization of bionanocomposites PHB, PEG and organophilic clay. Materials Science Forum , 869, 303-307. http://dx.doi.org/10.4028/www.scientific.net/MSF.869.303.

Rapacz-Kmita, A., Stodolak-Zych, E., Szaraniec, B., Gajek, M., & Dudek, P. (2015). Effect of clay mineral on the accelerated hydrolytic degradation of polylactide in the polymer/clay nanocomposites. Materials Letters, 146, 73-76. http://dx.doi.org/10.1016/j.matlet.2015.01.135.

Zhao, Q., Cheng, G., Li, H., Ma, X., & Zhang, L. (2005). Synthesis and characterization of biodegradable poly (3-hydroxybutyrate) and poly (ethylene glycol) multiblock copolymers. Polymer, 46(23), 10561-10567. http://dx.doi.org/10.1016/j.polymer.2005.08.014.

Faria, A. U. D., & Martins-Franchetti, S. M. (2010). Biodegradacao de filmes de polipropileno (PP), poli (3-hidroxibutirato)(PHB) e blenda de PP/PHB por microrganismos das aguas do Rio Atibaia. Polímeros: Ciência e Tecnologia, 20(2), 141-147. http://dx.doi.org/10.1590/S0104-14282010005000024.

Spyros, A., Kimmich, R., Briese, B. H., & Jendrossek, D. (1997). 1 H NMR imaging study of enzymatic degradation in poly (3-hydroxybutyrate) and poly (3-hydroxybutyrate-co-3-hydroxyvalerate). Evidence for preferential degradation of the amorphous phase by PHB depolymerase B from pseudomonaslemoignei. Macromolecules, 30(26), 8218-8225. http://dx.doi.org/10.1021/ma971193m.

Bonartseva, G. A., Myshkina, V. L., Nikolaeva, D. A., Rebrov, A. V., Gerasin, V. A., & Makhina, T. K. (2002). The biodegradation of poly-β-hydroxybutyrate (PHB) by a model soil community: the effect of cultivation conditions on the degradation rate and the physicochemical characteristics of PHB. Microbiology, 71(2), 221-226. http://dx.doi.org/10.1023/A:1015162608031. PMid:12024829.

Branciforti, M. C., Corrêa, M. C. S., Pollet, E., Agnelli, J. A. M., Nascente, P. A. P., & Avérous, L. (2013). Crystallinity study of nano-biocomposites based on plasticized poly (hydroxybutyrate-co-hydroxyvalerate) with organo-modified montmorillonite. Polymer Testing, 32(7), 1253-1260. http://dx.doi.org/10.1016/j.polymertesting.2013.08.001.

Liao, L., Dong, J., Shi, L., Fan, Z., Li, S., & Lu, Z. (2015). In vitro degradation behavior of l-lactide/trimethylene carbonate/glycolide terpolymers and a composite with poly (l-lactide-co-glycolide) fibers. Polymer Degradation & Stability, 111, 203-210. http://dx.doi.org/10.1016/j.polymdegradstab.2014.11.013.

Bordes, P., Hablot, E., Pollet, E., & Averous, L. (2009). Effect of clay organomodifiers on degradation of polyhydroxyalkanoates. Polymer Degradation & Stability , 94(5), 789-796. http://dx.doi.org/10.1016/j.polymdegradstab.2009.01.027.

Chandra, R., & Rustgi, R. (1998). Biodegradable polymers. Progress in Polymer Science, 23(7), 1273-1335. http://dx.doi.org/10.1016/S0079-6700(97)00039-7.
 

5bb671010e8825136ebd3c07 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections