Polímeros: Ciência e Tecnologia
https://www.revistapolimeros.org.br/article/doi/10.1590/0104-1428.07720
Polímeros: Ciência e Tecnologia
Original Article

Mercerization effect on the properties of LDPE/PHB composites reinforced with castor cake

Marisa Cristina Guimarães Rocha; Nancy Isabel Alvarez de Acevedo; Carlos Ivan Ribeiro de Oliveira; Maira Cunha Sanches; Natália Nogueira Coelho

Downloads: 2
Views: 711

Abstract

The aim of this work was to investigate the effects of mercerization on the structure of castor oil cake (CC) and on the tensile properties of LDPE/PHB/CC composites. To achieve this goal, the fibers were treated with NaOH solutions (5 and 10 wt%). Characterization techniques such as: scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) were used to investigate the structure of modified fibers. The composites were processed in a Haake mixer. Tensile tests of the composites were performed according to ASTM D638 standard. The analyzes revealed that mercerization promoted a partial conversion of cellulose I into cellulose II. Mercerization performed with 5% NaOH solution improved the tensile properties of the LDPE/PHB/CC composites, which were superior to those obtained with the 10% NaOH solution. This result suggests that the higher concentration of NaOH compromises the integrity of the fibers, deteriorating the mechanical properties.

Keywords

mercerization, castor oil cake, composites, fiber characterization, mechanical properties

References

1 Nayan, N. H. M., Razak, S. I. A., Rahman, W. A. W., & Majid, R. A. (2013). Effects of mercerization on the properties of paper produced from Malaysian pineapple leaf fiber. IACSIT International Journal of Engineering and Technology, 13(4), 1-6.

2 Abdullah, N. M., & Ahmad, I. (2012). Effect of chemical treatment on mechanical and water-sorption properties coconut fiber-unsaturated polyester from recycled PET. International Scholarly Research Notices, 2012, 1-8. http://dx.doi.org/10.5402/2012/134683.

3 Väisänen, T., Haapala, A., Lappalainen, R., & Tomppo, L. (2016). Utilization of agricultural and forest industry waste and residues in natural fiber-polymer composites: A review. Waste Management, 54, 62-73. http://dx.doi.org/10.1016/j.wasman.2016.04.037. PMid:27184447.

4 Satyanarayana, K. G., Arizaga, G. G. C., & Wypych, F. (2009). Biodegradable composites based on lignocellulosic fibers – An overview. Progress in Polymer Science, 34(9), 982-1021. http://dx.doi.org/10.1016/j.progpolymsci.2008.12.002.

5 Peças, P., Carvalho, H., Salman, H., & Leite, M. (2018). Natural fiber composites and their applications: A review. Journal of Composite Science, 2(4), 66-85. http://dx.doi.org/10.3390/jcs2040066.

6 Rohan, T., Tushar, B., & Mahesha, G. T. (2018). Review of natural fiber composites. IOP Conference Series. Materials Science and Engineering, 314, 1-8. http://dx.doi.org/10.1088/1757-899X/314/1/012020.

7 Hashim, M. Y., Roslan, M. N., Amin, A. M., Zaidi, A. M. A., & Ariffin, S. (2012). Mercerization treatment parameter effect on natural fiber reinforced polymer matrix composite: A brief review. World Academy of Science, Engineering and Technology, 6(8), 1378-1384. http://dx.doi.org/10.5281/zenodo.1059511.

8 Paukszta, D., & Borysiak, S. (2013). The influence of processing and the polymorphism of lignocellulosic fillers on the structure and properties of composite materials-A review. Materials, 6(7), 2747-2767. http://dx.doi.org/10.3390/ma6072747. PMid:28811406.

9 Albinante, S. R., Pacheco, E. B., & Visconte, L. L. (2013). Revisão dos tratamentos químicos da fibra natural para misturas com poliolefinas. Quimica Nova, 36(1), 114-122. http://dx.doi.org/10.1590/S0100-40422013000100021.

10 Liu, X. Y., & Dai, G. C. (2007). Surface modification and micromechanical properties of jute fiber mat reinforced polypropylene composites. Express Polymer Letters, 1(5), 299-307. http://dx.doi.org/10.3144/expresspolymlett.2007.43.

11 Mokaloba, N., & Batane, R. (2014). The effects of mercerization and acetylation treatments on the properties of sisal fiber and its interfacial adhesion characteristics on polypropylene. International Journal of Engineering Science and Technology, 6(4), 83-97. http://dx.doi.org/10.4314/ijest.v6i4.9.

12 Kabir, M. M., Wang, H., Aravinthan, T., Cardona, F., & Lau, K. T. (2011). Effects of natural fibre surface on composite properties: a review. In 1st International Postgraduate Conference on Engineering, Designing and Developing the Built Environment for Sustainable Wellbeing - eddBE2011 (pp. 94-99). Brisbane, Australia: USQ ePrints.

13 Liu, Y., & Hu, H. (2008). X-ray diffraction study of bamboo fibers treated with NaOH. Fibers and Polymers, 9(6), 735-739. http://dx.doi.org/10.1007/s12221-008-0115-0.

14 Jaramillo-Quiceno, N., Vélez, R. J. M., Cadena, Ch. E. M., Restrepo-Osorio, A., & Santa, J. F. (2018). Improvement of mechanical properties of pineapple leaf fibers by mercerization process. Fibers and Polymers, 19(12), 2604-2611. http://dx.doi.org/10.1007/s12221-018-8522-3.

15 Xia, Y., Xian, G., & Li, H. (2014). Enhancement of tensile properties of flax filaments through mercerization under sustained tension. Polymers & Polymer Composites, 22(2), 203-208. http://dx.doi.org/10.1177/096739111402200218.

16 Kalia, S., Kaith, B. S., & Kaur, I. (2009). Pretreatments of natural fibers and their application as reinforcing material in polymer composites – A review. Polymer Engineering and Science, 49(7), 1253-1272. http://dx.doi.org/10.1002/pen.21328.

17 Chandrasekar, M., Ishak, M. R., Sapuan, S. M., Leman, Z., & Jawaid, M. (2017). A review on the characterisation of natural fibres and their composites after alkali treatment and water absorption. Plastics, Rubber and Composites, 46(3), 119-136. http://dx.doi.org/10.1080/14658011.2017.1298550.

18 Baldoni, A. B., Carvalho, M. H., Souza, N. L., Nobrega, M. B. M., Milani, M., & Aragão, F. J. L. (2011). Variability of ricin content in mature seeds of castor bean. Pesquisa Agropecuária Brasileira, 46(7), 776-779. http://dx.doi.org/10.1590/S0100-204X2011000700015.

19 Melo, W. C., Santos, A. S., Santa Anna, L. M. M., & Pereira, N. Jr (2008). Acid and enzymatic hydrolysis of the residue from castor bean (Ricinus communis L.) oil extraction for ethanol production: detoxification and biodiesel process integration. Journal of the Brazilian Chemical Society, 19(3), 418-425. http://dx.doi.org/10.1590/S0103-50532008000300008.

20 Patel, V. R., Dumancas, G. G., Kasi Viswanath, L. C., Maples, R., & Subong, B. J. (2016). Castor oil: Properties, uses, and optimization of processing parameters in commercial production. Lipid Insights, 9, 1-12. http://dx.doi.org/10.4137/LPI.S40233. PMid:27656091.

21 Keera, S. T., El Sabagh, S. M., & Taman, A. R. (2018). Castor oil biodiesel production and optimization. Egyptian Journal of Petroleum, 27(4), 979-984. http://dx.doi.org/10.1016/j.ejpe.2018.02.007.

22 Treinyte, J., Grazuleviciene, V., & Ostrauskaite, J. (2014). Biodegradable polymer composites with nitrogen- and phosphorous- containing waste materials as the fillers. Ecological Chemistry and Engineering. S, 21(3), 515-528. http://dx.doi.org/10.2478/eces-2014-0038.

23 Nwigbo, S. C., Okafor, T. C., & Atuanya, C. U. (2013). The mechanical properties of castor seed shell-polyester matrix composites. Research Journal of Applied Sciences, Engineering and Technology, 5(11), 3159-3164. http://dx.doi.org/10.19026/rjaset.5.4551.

24 Satyanarayana, K. G., & Prasad, V. S. (2016). Starch-based “Green” composites. In S. Kalia (Ed.), Biodegradable green composites (pp. 199-298). New Jersey: John Wiley & Sons Inc. http://dx.doi.org/10.1002/9781118911068.ch8.

25 Stork, R. R., & Rocha, M. C G. G. G. (2010). Composites of low- density polyethylene and castor presscake. Polymer-Plastics Technology and Engineering, 49(13), 1352-1355. http://dx.doi.org/10.1080/03602559.2010.496699.

26 Burlein, G. A., & Rocha, M. C. G. (2014). LDPE/PHB blends filled with castor oil pressed cake. Materials Research, 17(1), 203-212. http://dx.doi.org/10.1590/S1516-14392013005000166.

27 Assmann, V. (2009). Obtenção de compósitos termomoldados a partir da torta de mamona plastificada com glicerol, derivado do processo de transesterificação de óleos e gorduras (Master’s Thesis). Universidade Federal do Paraná, Curitiba.

28 Burlein, G. A., & Rocha, M. C. G. (2014). Mechanical and morphological properties of LDPE/PHB blends filled with castor oil pressed cake. Materials Research, 17(1), 97-105. http://dx.doi.org/10.1590/S1516-14392013005000196.

29 Ribeiro, C. M., Castilho, L. R., Freire, D. M., Dias, M. L., Machado, A. C., Cunha, L. M., & Nazareth, N. J. (2010). BR Patent PI080410-6. Brazil. Base de Dados PATENTSCOPE®.

30 American Society for Testing and Materials – ASTM. (2014). ASTM D638-14: Standard test method for tensile properties of plastics. West Conshohocken, PA: ASTM International. Retrieved in 2020, August 11, from www.astm.org

31 Oh, S. Y., Yoo, D. I., Shin, Y., Kim, H. C., Kim, H. Y., Chung, Y. S., Park, W. H., & Youk, J. H. (2005). Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of X-ray diffraction and FTIR spectroscopy. Carbohydrate Research, 340(15), 2376-2391. http://dx.doi.org/10.1016/j.carres.2005.08.007 PMid:16153620.

32 Kondo, T. (1997). The assignment of IR absorption bands due to free hydroxyl groups in cellulose. Cellulose, 4(4), 281-292. http://dx.doi.org/10.1023/A:1018448109214.

33 Das, M., & Chakraborty, D. (2006). Influence of alkali treatment on the fine structure and morphology of bamboo fibers. Journal of Applied Polymer Science, 102(5), 5050-5056. http://dx.doi.org/10.1002/app.25105.

34 Yue, Y., Zhou, C., French, A. D., Xia, G., Han, G., Wang, Q., & Wu, Q. (2012). Comparative properties of cellulose nano-crystals from native and mercerized cotton fibers. Cellulose, 19(4), 1173-1187. http://dx.doi.org/10.1007/s10570-012-9714-4.

35 Lee, C. M., Mittal, A., Barnette, A. L., Kafle, K., Park, Y. B., Shin, H., Johnson, D. K., Park, S., & Kim, S. H (2013). Cellulose polymorphism study with sum-frequency-generation (SFG) vibration spectroscopy: identification of exocyclic CH2OH conformation and chain orientation. Cellulose, 20(3), 991-100. http://dx.doi.org/10.1007/s10570-013-9917-3.

36 Park, S., Baker, J. O., Himmel, M. E., Parilla, P. A., & Johnson, D. K. (2010). Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulose performance. Biotechnology for Biofuels, 3(1), 1-10. http://dx.doi.org/10.1186/1754-6834-3-10. PMid:20497524.

37 French, A. D. (2014). Idealized powder diffraction patterns for cellulose polymorphs. Cellulose (London, England), 21(2), 885-896. http://dx.doi.org/10.1007/s10570-013-0030-4.

38 Kafle, K., Greeson, K., Lee, C., & Kim, S. H. (2014). Cellulose polymorphs and physical properties of cotton fabrics processed with commercial textile mills for mercerization and liquid ammonia treatments. Textile Research Journal, 84(16), 1692-1699. http://dx.doi.org/10.1177/0040517514527379.

39 El Halal, Sh. L., Colussi, R., Deon, V. G., Pinto, V. Z., Villanova, F. A., Carreño, F. L. V., Dias, R. G., & Zavareze, R. (2015). Films based on oxidized starch and cellulose from barley. Carbohydrate Polymers, 133, 644-653. http://dx.doi.org/10.1016/j.carbpol.2015.07.024. PMid:26344323.

40 Oliveira, J. P., Bruni, G. P., Lima, K. O., El Halal, S. L. M., da Rosa, G. S., Dias, A. R. G., & Zavareze, E. da R. (2017). Cellulose fibers extracted from rice and oat husks and their application in hydrogel. Food Chemistry, 221, 153-160. http://dx.doi.org/10.1016/j.foodchem.2016.10.048. PMid:27979125.

41 Carrillo-Varela, I., Pereira, M., & Mendonça, R. T. (2018). Determination of polymorphic changes in cellulose from Eucalyptus spp. fibres after alkalization. Cellulose, 25, 6831-6845. http://dx.doi.org/10.1007/s10570-018-2060-4.

42 Mondragon, G., Fernandes, S., Retegi, A., Peña, C., Algar, I., Eceiza, A., & Arbelaiz, A. (2014). A common strategy to extracting cellulose nanoentities from different plants. Industrial Crops and Products, 55, 140-148. http://dx.doi.org/10.1016/j.indcrop.2014.02.014.

43 Yang, D., Zhong, L.-X., Yuan, T.-Q., Peng, X.-W., & Sun, R.-C. (2013). Studies on the structural characterization of lignin, hemocellulose and cellulose fractioned by ionic liquid followed by alkaline extraction from bamboo. Industrial Crops and Products, 43, 141-149. http://dx.doi.org/10.1016/j.indcrop.2012.07.024.

44 Guimarães, J. L., Trindade Cursino, A. C., Ketzer Saul, C., Sierrakowski, M. R., Ramos, L. P., & Satyanarayana, K. (2016). Evaluation of castor oil cake starch and recovered glycerol and development of “Green” composites based on those with plant fibers. Materials, 9(2), 76. http://dx.doi.org/10.3390/ma9020076. PMid:28787878.

45 Lengowski, E. C. (2012). Caracterização e predição da cristalinidade de celulose através de espectroscopia no infravermelho e análise multivariada (Master’s Thesis). Universidade Federal do Paraná, Curitiba.

46 de Carvalho Jr, A. B. (2010). Preparação e caracterização de quartzo particulado e discos quartzo-teflon para dosimetria termoluminiscente das radiações ionizantes (Doctoral Dissertation). Universidade Federal de Pernambuco, Recife.

47 Sánchez-Cantú, M., Ortiz-Moreno, L., Ramos-Cassellis, M. E., Marín-Castro, M., & De la Cerna-Hernández, C. (2018). Solid-state treatment of castor cake employing the enzymatic cocktail produced from pleurotus djamor fungi. Applied Biochemistry and Biotechnology, 185(2), 434-449. http://dx.doi.org/10.1007/s12010-017-2656-4. PMid:29178055.

48 Goldberg, R. N., Schliesser, J., Mittal, A., Decker, S. R., Santos, A. F. L. O. M., Freitas, V. L. S., Urbas, A., Lang, B. E., Heiss, C., Ribeiro da Silva, M. D. M. C., Woodfield, B. F., Katahira, R., Wang, W., & Johnson, D. K. (2015). A thermodynamic investigation of the cellulose allomorphs: Cellulose (am), cellulose Iβ (cr), cellulose II (cr) and cellulose III (cr). The Journal of Chemical Thermodynamics, 81, 184-226. http://dx.doi.org/10.1016/j.jct.2014.09.006.

49 Kabir, M. M., Wang, H., Lau, K. T., & Cardona, F. (2012). Chemical treatments on plant-based natural fibre reinforced polymer composites: an overview. Composites. Part B, Engineering, 43(7), 2883-2892. http://dx.doi.org/10.1016/j.compositesb.2012.04.053.

50 Ferreira, D. P., Cruz, J., & Fangueiro, R. (2019). Surface modification of natural fibers in biopolymer composites. In G. Koronis & A. Silva (Eds.), Woodhead Publishing series in Composites Science and Enginering, Green composites for automotive applications (pp. 3-41). Duxford, UK: Woodhead Publishing.

51 Izani, M. A., Paridah, M. T., Anwar, U. M., Nor, M. Y. M., & H’ng, P. S. (2013). Effects of fiber treatment on morphology, tensile and thermogravimetric analysis of oil palm empty fruit bunches fibers. Composites. Part B, Engineering, 45(1), 1251-1257. http://dx.doi.org/10.1016/j.compositesb.2012.07.027.

52 Wang, C., Wang, J., Yu, C., Wu, B., Wang, Y., & Li, W. (2014). A novel method for the determination of seady-torque of polymer melts by HAAKE MiniLab. Polymer Testing, 33, 138-144. http://dx.doi.org/10.1016/j.polymertesting.2013.12.001.

53 Santi C.R., Hage Jr, E., Correa, C. A. & Vlachopoulos, J. (2009). Torque viscometry of molten polymers and composites. Applied Rheology, 19(1), 13148-1-13148-7.

54 Pang, A. L., Bakar, A. A., & Ismail, H. (2015). Effects of Kenaf loading on processability and properties of linera low density polyethylene/poly(vinyl alcohol)/Kenaf composites. BioResources, 10(4), 7302-7314. http://dx.doi.org/10.15376/biores.10.4.7302-7314.

55 Burlein, G. A. (2010). Avaliação das propriedades de polietileno de baixa densidade (PEBD), poli(3-hidroxibutirato) (PHB) e de suas misturas com torta de mamona (Master’s Thesis). Universidade do Estado do Rio de Janeiro, Brazil.

56 Rigotti, D., Dorigato, A., & Pegoretti, A. (2020). Thermo-Mechanical Behavior and Hydrolitic degradation of Linear Low Density Polyethylene/Poly (3-Hydroxybutirate) Blends. Frontier in Materials, 7(31), 1-11. http://dx.doi.org/10.3389/mats2020.0031.

57 Karami, S., Nazockdast, H., Ahmadi, Z., Rabolt, J. F., Noda, I., & Chase, D. B. (2019). Microstructure effects on the rheology of nanoclay-filled PHB/LDPE blends. Polymer Composites, 40(10), 4125-4134. http://dx.doi.org/10.1002/pc.25273.
 

6037bc33a953955c46302a03 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections