Polímeros: Ciência e Tecnologia
https://www.revistapolimeros.org.br/article/doi/10.1590/0104-1428.05320
Polímeros: Ciência e Tecnologia
Original Article

Improved durability of Bisphenol A polycarbonate by bilayer ceramic nano-coatings alumina-zinc oxide

Abdellah Moustaghfir; Agnes Rivaton; Bénédicte Mailhot; Michel Jacquet

Downloads: 0
Views: 523

Abstract

Polycarbonate exposed to sunlight yellows, degrades and loses its usable properties. In order to increase its lifetime, it can be coated with nano-ceramic thin layers of ZnO and Al2O3 deposited by sputtering. The role of the ZnO is to absorb the UV photons that can damageable for the polycarbonate. However, one of the limitations in the use of ZnO is the photocatalytic oxidation that could occur at interface ZnO/PC as a consequence of the photocatalytic activity of this oxide. Insertion of Al2O3 between PC and ZnO could be a way to inhibit this interfacial oxidation. The photooxidation of the ceramic/polymer assemblies, in condition of artificial accelerated ageing, was measured by infra-red and UV-vis spectroscopies. The results show that the photocatalytic activity of ZnO occurring in monolayer coated substrates can be significantly reduced by insertion of Al2O3 and that, in addition, Al2O3 decreases the permeability to oxygen of the coating.

Keywords

photoprotection, photoageing, polycarbonate, thermooxidation, thin films

References

1 Alavi Nikje, M. M., & Askarzadeh, M. (2013). Green and inexpensive method to recover Bisphenol-A from polycarbonate wastes. Polímeros: Ciência e Tecnologia, 23(1), 29-31. http://dx.doi.org/10.1590/S0104-14282013005000019.

2 Wu, D., Zhang, D., Liu, S., Jin, Z., Chowwanonthapunya, T., Gao, J., & Li, X. (2020). Prediction of polycarbonate degradation in natural atmospheric environment of China based on BP-ANN model with screened environmental factors. Chemical Engineering Journal, 399, 125878. http://dx.doi.org/10.1016/j.cej.2020.125878.

3 Motta, A., La Mantia, F. P., Ascione, L., & Mistretta, M. C. (2020). Theoretical study on the decomposition mechanism of bisphenol A polycarbonate induced by the combined effect of humidity and UV irradiation. Journal of Molecular Graphics & Modelling, 99, 107622. http://dx.doi.org/10.1016/j.jmgm.2020.107622. PMid:32344302.

4 Rivaton, A. (1995). Recent advances in bisphenol-A polycarbonate photodegradation. Polymer Degradation & Stability, 49(1), 163-179. http://dx.doi.org/10.1016/0141-3910(95)00069-X.

5 Rivaton, A., Mailhot, B., Soulestin, J., Varghese, H., & Gardette, J.-L. (2002). Comparison of the photochemical and thermal degradation of bisphenol-A polycarbonate and trimethylcyclohexane-polycarbonate. Polymer Degradation & Stability, 75(1), 17-33. http://dx.doi.org/10.1016/S0141-3910(01)00201-4.

6 Rivaton, A., Mailhot, B., Soulestin, J., Varghese, H., & Gardette, J.-L. (2002). Influence of the chemical structure of polycarbonates on the contribution of crosslinking and chain scissions to the photothermal ageing. European Polymer Journal, 38(7), 1349-1369. http://dx.doi.org/10.1016/S0014-3057(01)00307-X.

7 Pickett, J. A. (2011). Influence of photo-Fries reaction products on then photodegradation of bisphenol-A polycarbonate. Polymer Degradation & Stability, 96(12), 2253-2265. http://dx.doi.org/10.1016/j.polymdegradstab.2011.08.016.

8 Mohammed, A., El-Hiti, G., Yousif, E., Ahmed, A. A., Ahmed, D. S., & Alotaibi, M. H. (2020). Protection of poly(vinyl chloride) films against photodegradation using various valsartan tin complexes. Polymers, 12(4), 969. http://dx.doi.org/10.3390/polym12040969. PMid:32326307.

9 Lungulescu, E. M., & Zaharescu, T. (2016). Stabilization of polymers against photodegradation. In D. Rosu & P. M. Visakh (Eds.), Photochemical behavior of multicomponent polymeric-based materials (Advanced Structured Materials, Vol. 26, pp. 165-192). Cham: Springer. http://dx.doi.org/10.1007/978-3-319-25196-7_6.

10 Diepens, M. (2009). Photodegradation and stability of bisphenol a polycarbonate in weathering conditions. Eindhoven: Technische Universiteit Eindhoven. https://doi.org/10.6100/IR642300.

11 Allen, N. S., Luc-Gardette, J., & Lemaire, J. (1983). Photostabilising action of ortho-hydroxy benzophenones in polypropylene film: influence of processing and wavelength of irradiation. Polymer Photochemistry, 3(4), 251-265. http://dx.doi.org/10.1016/0144-2880(83)90034-9.

12 Claudé, B., Gonon, L., Verney, V., & Gardette, J.-L. (2001). Consequences of photoageing on the durability of plastic glasses for automotive applications. Polymer Testing, 20(7), 771-778. http://dx.doi.org/10.1016/S0142-9418(01)00022-8.

13 Alsadi, J. (2020). Systematic review: impact of processing parameters on dispersion of polycarbonate: composites, and pigment characterized by different techniques. Materials Today: Proceedings, 27(4), 3254-3264. http://dx.doi.org/10.1016/j.matpr.2020.05.027.

14 Saron, C., Felisberti, M. I., Zulli, F., & Giordano, M. (2007). Effects of bismuth vandate and anthraquinone dye on the photodegradation of polycarbonate. Journal of the Brazilian Chemical Society, 18(5), 900-910. http://dx.doi.org/10.1590/S0103-50532007000500005.

15 Awitor, K. O., Rivaton, A., Gardette, J.-L., Down, A. J., & Johnson, M. B. (2007). Photo-protection and photo-catalytic activity of crystalline anatase titanium dioxide sputter-coated on polymer films. Thin Solid Films, 516(8), 2286-2291. http://dx.doi.org/10.1016/j.tsf.2007.08.005.

16 Giancaterina, S., Ben Amor, S., Baud, G., Gardette, J.-L., Jacquet, M., Perrin, C., & Rivaton, A. (2002). Photoprotective ceramic coatings on poly(ether ether ketone). Polymer, 43(24), 6397-6405. http://dx.doi.org/10.1016/S0032-3861(02)00499-8.

17 Guedri-Knani, L., Gardette, J. L., Jacquet, M., & Rivaton, A. (2004). Photoprotection of poly(ethylene-naphthalate) by zinc oxide coating. Surface and Coatings Technology, 180-181(71-75), 71-75. http://dx.doi.org/10.1016/j.surfcoat.2003.10.039.

18 Chodun, R., Skowronski, S., Okrasa, B., Wicher, K., Nowakowska-Langier, K., & Zdunek, K. (2019). Optical TiO2 layers deposited on polymer substrates by the Gas Injection Magnetron Sputtering technique. Applied Surface Science, 466, 12-18. http://dx.doi.org/10.1016/j.apsusc.2018.10.003.

19 Moustaghfir, A., Tomasella, E., Rivaton, A., Mailhot, B., Jacquet, M., Gardette, J.-L., & Cellier, J. (2004). Sputtered zinc oxide coatings: structural study and application to the photoprotection of the polycarbonate. Surface and Coatings Technology, 180-181, 642-645. http://dx.doi.org/10.1016/j.surfcoat.2003.10.109.

20 Ghamsari, M. S., Alamdari, S., Han, W., & Park, H. H. (2016). Impact of nanostructured thin ZnO film in ultraviolet protection. International Journal of Nanomedicine, 12, 207-216. http://dx.doi.org/10.2147/IJN.S118637. PMid:28096668.

21 Mosbah, A., Moustaghfir, A., Abed, S., Bouhssira, N., Aida, M. S., Tomasella, E., & Jacquet, M. (2005). Comparison of the structural and optical properties of zinc oxide thin films deposited by d.c. and r.f. sputtering and spray pyrolysis. Surface and Coatings Technology, 200(1-4), 293-296. http://dx.doi.org/10.1016/j.surfcoat.2005.02.012.

22 Juarez, T., Schroer, A., Schwaiger, R., & Hodge, A. M. (2018). Evaluating sputter deposited metal coatings on 3D printed polymer micro-truss structures. Materials & Design, 140, 442-450. http://dx.doi.org/10.1016/j.matdes.2017.12.005.

23 Andrade, J. E., Machado, R., Macêdo, M. A., & Cunha, F. G. C. (2013). AFM and XRD characterization of silver nanoparticles films deposited on the surface of DGEBA epoxy resin by ion sputtering. Polímeros: Ciência e Tecnologia, 23(1), 19-23. http://dx.doi.org/10.1590/S0104-14282013005000009.

24 Zailan, S. N., Bouaissi, A., Mahmed, N., & Abdullah, M. M. A. (2020). Influence of ZnO nanoparticles on mechanical properties and photocatalytic activity of self-cleaning ZnO-based geopolymer paste. Journal of Inorganic and Organometallic Polymers and Materials, 30(6), 2007-2016. http://dx.doi.org/10.1007/s10904-019-01399-3.

25 Kamalian, P., Khorasani, S. N., Abdolmaleki, A., Karevan, M., Khalili, S., Shirani, M., & Neisiany, R. E. (2020). Toward the development of polyethylene photocatalytic degradation. Journal of Polymer Engineering, 40(2), 181-191. http://dx.doi.org/10.1515/polyeng-2019-0230.

26 Lemaire, J. (1982). The photocatalyzed oxidation of polyamides and polyolefins. Pure and Applied Chemistry, 54(9), 1667-1682. http://dx.doi.org/10.1351/pac198254091667.

27 Serpone, N. (2000). Photocatalysis. In R. E. Kirk & D. F. Othmer (Eds.), Kirk-Othmer encyclopedia of chemical technology (Vol. 19, pp. 1-17). New York: John Wiley & Sons. https://doi.org/10.1002/0471238961.1608152019051816.a01.

28 Rivaton, A., Gardette, J.-L., Morlat-Therias, S., Mailhot, B., Tomasella, E., Awitor, O., Komvopoulos, K., & Fabbri, P. (2009). Enhancement of photoprotection and mechanical properties of polymers by deposition of thin coatings. In J. W. Martin, R. A. Ryntz, J. Chin & R. A. Dickie (Eds.), Service life prediction of polymeric materials (pp. 327-343). Boston: Springer. http://dx.doi.org/10.1007/978-0-387-84876-1_22.
 

6037b2b6a953954bb616dcf4 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections