Polímeros: Ciência e Tecnologia
https://www.revistapolimeros.org.br/article/doi/10.1590/0104-1428.05019
Polímeros: Ciência e Tecnologia
Original Article

Influences of the mesh in the CAE simulation for plastic injection molding

Marin, Felipe; Souza, Adriano Fagali de; Pabst, Rodolfo Gabriel; Ahrens, Carlos Henrique

Downloads: 0
Views: 692

Abstract

Although computer-aided engineering (CAE) software has been used for many years in the plastic industry, identifying the most appropriate mesh geometry and density remains a challenge. It can affect the accuracy of the simulation, the time and the costs. The evaluation of the most suitable mesh is not easy because the difficulties to obtain the real the values of the pressure and temperature inside the mold. The current work investigates this issue. A mold was manufactured and sensors were installed in its interior. CAE simulations using different mesh geometries and densities were evaluated against the experimental data. The results showed that the computational time was mostly influenced by the mesh geometry. The use of 2D mesh and lower density can lead to a faster and more precise simulation of pressure inside the mold and 3D mesh with lower density can provide a faster and precise simulation of the temperature.

References

1 Mathivanan, D., & Parthasarathy, N. S. (2009). Prediction of sink depths using nonlinear modeling of injection molding variables. International Journal of Advanced Manufacturing Technology43(7-8), 654-663. http://dx.doi.org/10.1007/s00170-008-1749-1

2 Park, H. S., & Dang, X. P. (2010). Optimization of conformal cooling channels with array of baffles for plastic injection mold. International Journal of Precision Engineering and Manufacturing11(6), 879-890. http://dx.doi.org/10.1007/s12541-010-0107-z

3 Kiam, T. M., & Pereira, N. C. (2007). Study of injection-compression molded part using CAE analysis. Polímeros. Ciência e Tecnologia17(1), 16-22. http://doi.org/10.1590/S0104-14282007000100007

4 Hassan, H., Regnier, N., Lebot, C., Pujos, C., & Defaye, G. (2009). Effect of cooling system on the polymer temperature and solidification during injection molding. Applied Thermal Engineering29(8), 1786-1791. http://dx.doi.org/10.1016/j.applthermaleng.2008.08.011

5 Hsu, F. H., Wang, K., Huang, C. T., & Chang, R. (2013). Investigation on conformal cooling system design in injection molding. Advances in Production Engineering & Management8(2), 107-115. http://dx.doi.org/10.14743/apem2013.2.158

6 Padilla, A., Baselga, J., & Bravo, J. (2006). Comparison of gauge deformation determined by simulation of the injection process with real process values. Información Tecnológica17(4), 53-58. http://dx.doi.org/10.4067/S0718-07642006000400010

7 Autodesk Moldflow Insight (2017). User guide. Retrieved in 2019, June 24, from knowledge.autodesk.com/support/moldflow -insight/troubleshooting/caas/sfdcarticles/sfdcarticles/When-to-use-Dual-Domain-or-3D-mesh-in-Simulation-Moldflow.html?st=dd 

8 Miranda, D. A. D., & Nogueira, A. L. (2019). Simulation of an injection process using a CAE tool: assessment of operational conditions and mold design on the process efficiency. Materials Research22(2), e20180564. http://dx.doi.org/10.1590/1980-5373-mr-2018-0564

9 Yang, D., Zhao, P., Zhou, H., & Chen, L. (2014). Computer determination of weld lines in injection molding based on filling simulation with surface model. Journal of Reinforced Plastics and Composites33(15), 1403-1415. http://dx.doi.org/10.1177/0731684414535277

10 Kovács, J. G., & Sikló, B. (2010). Experimental validation of simulated weld line formation in injection moulded parts. Polymer Testing29(7), 910-914. http://dx.doi.org/10.1016/j.polymertesting.2010.06.003

11 Wang, J., & Yu, Z. (2012). Feature-sensitive tetrahedral mesh generation with guaranteed quality. Computer Aided Design44(5), 400-412. http://dx.doi.org/10.1016/j.cad.2012.01.002. PMid:22328787. 

12 Ito, Y., Shih, A. M., & Soni, B. K. (2004). Reliable isotropic tetrahedral mesh generation based on an advancing front method. In Proceedings of The 13th International Meshing Roundtable – IMR (pp. 95-106). Williamsburg, Virginia: IMR. 

13 Choi, W. Y., Kwak, D. Y., Son, I. H., & Im, Y. T. (2003). Tetrahedral mesh generation based on advancing front technique and optimization scheme. International Journal for Numerical Methods in Engineering58(12), 1857-1872. http://dx.doi.org/10.1002/nme.840

14 Jin, H., & Tanner, R. I. (1993). Generation of unstructured tetrahedral meshes by advancing front technique. International Journal for Numerical Methods in Engineering36(11), 1805-1823. http://dx.doi.org/10.1002/nme.1620361103.

15 Ito, Y., Murayama, M., Yamamoto, K., Shih, A. M., & Soni, B. K. (2013). Efficient hybrid surface/volume mesh generation using suppressed marching-direction method. AIAA Journal51(6), 1450-1461. http://dx.doi.org/10.2514/1.J052125

16 Parmar, K. C., & Kaiser, H. (2017). Comparison of simulation results when using two different methods for mold creation in moldflow simulation. International Journal of Scientific & Technology Research6(4), 128-131. 

17 Vietri, U., Sorrentino, A., Speranza, V., & Pantani, R. (2011). Improving the predictions of injection molding simulation software. Polymer Engineering and Science51(12), 2542-2551. http://dx.doi.org/10.1002/pen.22035

18 Fan, X. J., Tanner, R. I., & Zheng, R. (2010). Smoothed particle hydrodynamics simulation of non-Newtonian moulding flow. Journal of Non-Newtonian Fluid Mechanics165(5), 219-226. http://dx.doi.org/10.1016/j.jnnfm.2009.12.004

19 Zhou, H., Hu, Z., & Li, D. (2013). Mathematical models for the filling and packing simulation. In H. Zhou (Ed)., Computer modeling for injection molding: simulation, optimization and control (chap. 3). Wiley. http://dx.doi.org/10.1002/9781118444887.ch3

20 Fernandes, C., Pontes, A. J., Viana, J. C., & Gaspar-Cunha, A. (2016). Modeling and optimization of the injection molding: a review. Advances in Polymer Technology37(2), 21683-21704. https://doi.org/10.1002/adv.21683

21 Li, C. S., & Shen, Y. K. (1995). Optimum design of runner system balancing in injection molding. International Communications in Heat and Mass Transfer22(2), 179-188. http://dx.doi.org/10.1016/0735-1933(95)00003-8

22 Zienkiewicz, O. C., Taylor, R. L., & Nithiarasu, P. (2005). Finite element methods for fluid dynamics. Elsevier. 

23 Zhou, H., Hu, Z., Zhang, Y., & Li, D. (2013). Numerical implementations for the filling and packing simulation. In H. Zhou (Ed)., Computer modeling for injection molding: simulation, optimization and control (chap. 4). Wiley. http://dx.doi.org/10.1002/9781118444887.ch4

24 Wang, X., Li, H., Gu, J., Li, Z., Ruan, S., Shen, C., & Wang, M. (2017). Pressure analysis of dynamic injection molding and process parameter optimization for reducing warpage of injection molded products. Polymers9(3), 85. http://dx.doi.org/10.3390/polym9030085. PMid:30970773. 

5e8e23c70e88256f221ad513 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections