Polímeros: Ciência e Tecnologia
https://www.revistapolimeros.org.br/article/doi/10.1590/0104-1428.04819
Polímeros: Ciência e Tecnologia
Original Article

Mechanical characterization of HDPE reinforced with cellulose from rice husk biomass

Bosenbecker, Mariane Weirich; Cholant, Gabriel Monteiro; Silva, Gabriela Escobar Hochmuller da; Paniz, Oscar Giordani; Carreño, Neftali Lenin Villarreal; Marini, Juliano; Oliveira, Amanda Dantas de

Downloads: 0
Views: 632

Abstract

High-density polyethylene (HDPE) reinforced with cellulose from rice husk (RH) were prepared and studied. The RH biomass was submitted to acid extraction and bleaching process and then analyzed for its cellulose extraction efficiency by X-ray diffraction (XRD) and Fourier transformation infrared spectroscopy (FTIR). After that, the RH cellulose (RHC) was incorpored to the HDPE matrix by melt blending with different filler contents (5, 10 and 15 wt%), and then characterized in terms of mechanical properties and morphology. The RHC incorporation in the HDPE matrix resulted in an increase in elastic modulus regardless the filler content added; also, the impact resistance was maintained for RHC contents up to 10%. The morphological analysis of the composites showed that the cellulose was well dispersed in the matrix, which contributed to the improvement of the final rigidity of these materials, indicating the feasibility of incorporating this residue in the production of HDPE composites.

Keywords

cellulose, biomass, polymeric composites, rice husk.

References

1 Ligowski, E., Santos, B. C., & Fujiwara, S. T. (2015). Materiais compósitos a base de fibras da cana-de-açúcar e polímeros reciclados obtidos através da técnica de extrusão TT - Composite materials based on fibers from sugar cane and recycled polymers obtained by extrusion technique. Polímeros: Ciência e Tecnologia25(1), 70-75. http://dx.doi.org/10.1590/0104-1428.1605

2 Yang, H. S., Kim, H. J., Park, H. J., Lee, B. J., & Hwang, T. S. (2006). Water absorption behavior and mechanical properties of lignocellulosic filler-polyolefin bio-composites. Composite Structures72(4), 429-437. http://dx.doi.org/10.1016/j.compstruct.2005.01.013

3 Food and Agriculture Organization of the United Nations – FAO. (2018). Seguimiento del mercado del arroz de la FAO (Informe FAO de actualización de precios del arroz, Vol. 21, No. 1, 10 p.). Rome: FAO. Retrieved in 2019, June 22, from http://www.fao.org/3/I9243ES/i9243es.pdf [

4 Santos, P., & Costa, A. C. S. (2013). X-ray diffraction and thermal analysis of kaolins particle size fractions. Semina. Ciências Exatas e Tecnológicas34(1), 9-22. http://dx.doi.org/10.5433/1679-0375.2013v34n1p9

5 Chandrasekhar, S., Satyanarayana, K. G., Pramada, P. N., Raghavan, P., & Gupta, T. N. (2003). Processing, properties and applications of reactive silica from rice husk - an overview. Journal of Materials Science38(15), 3159-3168. http://dx.doi.org/10.1023/A:1025157114800

6 Wu, G., Qu, P., Sun, E., Chang, Z., Xu, Y., & Huang, H. (2015). Physical, chemical, and rheological properties of rice husks treated by composting process. BioResources10(1), 227-239. Retrieved in 2019, June 22, from https://bioresources.cnr.ncsu.edu/resources/physical-chemical-and-rheological-properties-of-rice-husks-treated-by-composting-process/ 

7 Campos, A., Teodoro, K. B. R., Marconcini, J. M., Mattoso, L. H. C., & Martins-Franchetti, S. M. (2011). Efeito do tratamento das fibras nas propriedades do biocompósito de amido termoplástico/policaprolactona/sisal. Polímeros, Ciência e Tecnologia21(3), 217-222. http://dx.doi.org/10.1590/s0104-14282011005000039

8 Johar, N., Ahmad, I., & Dufresne, A. (2012). Extraction, preparation and characterization of cellulose fibres and nanocrystals from rice husk. Industrial Crops and Products37(1), 93-99. http://dx.doi.org/10.1016/j.indcrop.2011.12.016

9 El Halal, S. L. M., Colussi, R., Deon, V. G., Pinto, V. Z., Villanova, F. A., Carreño, N. L. V., Dias, A. R. G., & Zavareze, E. R. (2015). Films based on oxidized starch and cellulose from barley. Carbohydrate Polymers133, 644-653. http://dx.doi.org/10.1016/j.carbpol.2015.07.024. PMid:26344323.

10 Prado, K. S., & Spinacé, M. A. S. (2015). Characterization of Fibers from Pineapple’s Crown, Rice Husks and Cotton Textile Residues. Materials Research18(3), 530-537. http://dx.doi.org/10.1590/1516-1439.311514

11 Jonoobi, M., Harun, J., Shakeri, A., Misra, M., & Oksmand, K. (2009). Chemical composition, crystallinity, and thermal degradation of bleached and unbleached kenaf bast (Hibiscus cannabinus) pulp and nanofibers. BioResources4(2), 626-639. Retrieved in 2019, June 22, from https://bioresources.cnr.ncsu.edu/resources/chemical-composition-crystallinity-and-thermal-degradation-of-bleached-and-unbleached-kenaf-bast-hibiscus-cannabinus-pulp-and-nanofibers/

12 Hospodarova, V., Singovszka, E., & Stevulova, N. (2018). Characterization of cellulosic fibers by FTIR spectroscopy for their further implementation to building materials. American Journal of Analytical Chemistry09(06), 303-310. http://dx.doi.org/10.4236/ajac.2018.96023

13 Rong, M. Z., Zhang, M. Q., Liu, Y., Yang, G. C., & Zeng, H. M. (2001). The effect of fiber treatment on the mechanical properties of unidirectional sisal-reinforced epoxy composites. Composites Science and Technology61(10), 1437-1447. http://dx.doi.org/10.1016/S0266-3538(01)00046-X.

14 Adel, A. M., Abd El-Wahab, Z. H., Ibrahim, A. A., & Al-Shemy, M. T. (2010). Characterization of microcrystalline cellulose prepared from lignocellulosic materials. Part I. Acid catalyzed hydrolysis. Bioresource Technology101(12), 4446-4455. http://dx.doi.org/10.1016/j.biortech.2010.01.047. PMid:20185300. 

15 Pelissari, F. M., Sobral, P. J. A., & Menegalli, F. C. (2014). Isolation and characterization of cellulose nanofibers from banana peels. Cellulose (London, England)21(1), 417-432. http://dx.doi.org/10.1007/s10570-013-0138-6

16 Rosa, M. F., Medeiros, E. S., Malmonge, J. A., Gregorski, K. S., Wood, D. F., Mattoso, L. H. C., Glenn, G., Orts, W. J., & Imam, S. H. (2010). Cellulose nanowhiskers from coconut husk fibers: effect of preparation conditions on their thermal and morphological behavior. Carbohydrate Polymers81(1), 83-92. http://dx.doi.org/10.1016/j.carbpol.2010.01.059

17 Silvério, H. A., Flauzino Neto, W. P., Dantas, N. O., & Pasquini, D. (2013). Extraction and characterization of cellulose nanocrystals from corncob for application as reinforcing agent in nanocomposites. Industrial Crops and Products44, 427-436. http://dx.doi.org/10.1016/j.indcrop.2012.10.014

18 Oliveira, J. P., Bruni, G. P., Lima, K. O., Halal, S. L. M. E., Rosa, G. S. D., Dias, A. R. G., & Zavareze, E. D. R. (2017). Cellulose fibers extracted from rice and oat husks and their application in hydrogel. Food Chemistry221, 153-160. http://dx.doi.org/10.1016/j.foodchem.2016.10.048. PMid:27979125. 

19 Boran, S. (2016). Mechanical, morphological, and thermal properties of nutshell and microcrystalline cellulose filled high-density polyethylene composites. BioResources11(1), 1741-1752. http://dx.doi.org/10.15376/biores.11.1.1741-1752

20 Spadetti, C., Silva, E. A., Fo., Sena, G. L., & Melo, C. V. P. (2017). Propriedades térmicas e mecânicas dos compósitos de polipropileno pós-consumo reforçados com fibras de celulose. Polímeros, Ciência e Tecnologia, 27(spe), 84-90. http://dx.doi.org/10.1590/0104-1428.2320

21 Morais, J. A., Gadioli, R., & De Paoli, M.-A. (2016). Curaua fiber reinforced high-density polyethylene composites: effect of impact modifier and fiber loading. Polímeros, Ciência e Tecnologia26(2), 115-122. http://dx.doi.org/10.1590/0104-1428.2124

22 Poletto, M., & Zattera, A. J. (2017). Mechanical and dynamic mechanical properties of polystyrene composites reinforced with cellulose fibers : coupling agent effect. Journal of Thermoplastic Composite Materials30(9), 1242-1254. http://dx.doi.org/10.1177/0892705715619967.

23 Mathew, A. P., Oksman, K., & Sain, M. (2005). Mechanical properties of biodegradable composites from poly lactic acid (PLA) and microcrystalline cellulose (MCC). Journal of Applied Polymer Science97(5), 2014-2025. http://dx.doi.org/10.1002/app.21779.

5eb2f20a0e88251831d76ee0 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections