Polímeros: Ciência e Tecnologia
https://www.revistapolimeros.org.br/article/doi/10.1590/0104-1428.04221
Polímeros: Ciência e Tecnologia
Original Article

Determination of antioxidant and antimicrobial activity of sweetgum (Liquidambar orientalis) leaf, a medicinal plant

Hatice Ulusoy; Şule Ceylan; Hüseyin Peker

Downloads: 0
Views: 564

Abstract

In the study, sweetgum tree (Liquidambar orientalis), which is an endemic species that grows in Mugla, Köyceğiz and is applied for medicinal purposes among the public, its leaves was examined. The antioxidant ability of the extract obtained from dried plant leaves has been evaluated using a variety of methods which are Total Phenolic Substance, Total Flavonoid, FRAP, CUPRAC, DPPH, and ABTS+. Simultaneously, the antimicrobial activity of the plant extract was examined using disk diffusion and microdilution methods to determine the minimum inhibitor concentration (MIC). While the total phenolic content of Liquidambar orientalis extract was 96.34 mg GAE/g, the total amount of flavonoid was 2.15 mg QE/g. When the results of the antioxidant analysis were examined, it was observed that it had a good level of antioxidant activity with the results of 49.25 ± 0.54 mmol TEAC/g according to the CUPRAC method, 39.83 ± 0.25 µmol Fe/g according to the FRAP method, 80.34 μg/mL according to the DPPH method and 51.20 μg/mL according to the ABTS+ method. As a result of the antimicrobial analysis, it was indicated that L. orientalis extract was more effective on Staphylococcus aureus (S. aureus), which is a gram-positive bacterium and causes a wide variety of clinical diseases. Even, L. orientalis extract with an MIC value of 10 mg/mL has been found to have a higher antibacterial effect than Amoxicillin+Clavulanic acid, which is used as a standard drug in that field. This research is significant because it is the first to report the determination of all biological activities for L. orientalis, including total polyphenols, flavonoid contents, antioxidant content, and antimicrobial activity.

 

 

Keywords

sweetgum tree, diary tree, medicinal plant, antioxidant, antimicrobial

References

1 Göktaş, Ö., & Gıdık, B. (2019). Uses of medicinal and aromatic plants. Bayburt Üniversitesi Fen Bilimleri Dergisi, 2(1), 145-151. Retrieved in 2021, May 15, from https://dergipark.org.tr/en/pub/bufbd/issue/46478/515490

2 Demiray, S., Pintado, M., & Castro, P. (2009). Evaluation of phenolic profiles and antioxidant activities of Turkish medicinal plants: Tilia argentea, Crataegi folium leaves and Polygonum bistorta roots. World Academy of Science, Engineering and Technology, 3(6), 74-79. Retrieved in 2021, May 15, from https://publications.waset.org/10348/pdf

3 İşcan, G., Ki̇ri̇mer, N., Kürkcüoǧlu, M., Başer, H. C., & Demi̇rci̇, F. (2002). Antimicrobial screening of Mentha piperita essential oils. Journal of Agricultural and Food Chemistry, 50(14), 3943-3946. http://dx.doi.org/10.1021/jf011476k. PMid:12083863.

4 Soković, M. D., Vukojević, J., Marin, P. D., Brkić, D. D., Vajs, V., & van Griensven, L. J. L. D. (2009). Chemical composition of essential oils of Thymus and Mentha species and their antifungal activities. Molecules, 14(1), 238-249. http://dx.doi.org/10.3390/molecules14010238. PMid:19136911.

5 Kanatt, S. R., Chander, R., & Sharma, A. (2008). Chitosan and mint mixture: a new preservative for meat and meat products. Food Chemistry, 107(2), 845-852. http://dx.doi.org/10.1016/j.foodchem.2007.08.088.

6 Yang, S.-A., Jeon, S.-K., Lee, E.-J., Shim, C.-H., & Lee, I.-S. (2010). Comparative study of the chemical composition and antioxidant activity of six essential oils and their components. Journal of Natural Product Research, 24(2), 140-151. http://dx.doi.org/10.1080/14786410802496598. PMid:20077307.

7 Güre, F., & Arabacı, O. (2005). Natural antioxidants in some medicinal plants and their importance. In Turkey VI Field Crops Congress (pp. 465-470). Antalya, Turkey.

8 Meral, R., & Doğan, İ. S. (2006). Antioxidant substances found in wheat. In Cereal Products Technology Congress. Gaziantep. Turkey.

9 Yarnell, E., & Abascal, K. (2004). Botanical treatment and prevention of Malaria: part 2 - selected botanicals. Alternative and Complementary Therapies, 10(5), 277-284. http://dx.doi.org/10.1089/act.2004.10.277.

10 Kırca, A., Bilişli, A., Demirel, N. N., Turhan, H., & Arslan, E. (2007). Antioxidant and antimicrobial activities of some medicinal and aromatic plants in Çanakkale flora. Tübitak Proje, (104), 292.

11 Leal-Cardoso, J. H., & Fonteles, M. C. (1999). Pharmacological effects of essential oils of plants of the northeast of Brazil. Anais da Academia Brasileira de Ciências, 71(2), 207-213. PMid:10412491.

12 Baytop, T. (1984). Therapy with medicinal plants in Turkey. Istanbul, Turkey: Istanbul University Press.

13 Hafızoğlu, H. (1982). Analytical studies on the balsam of Liquidambar orientalis Mill. by gas chromatography and mass spectrometry. Holzforschung, 36, 311-313. http://dx.doi.org/10.1515/hfsg.1982.36.6.311.

14 Hafızoğlu, H., Reunanen, M., & İstek, A. (1996). Chemical composition of levant storax. Holzforschung, 50, 116-117.

15 İstek, A., & Hafızoğlu, H. (2005). Chemical components of Sweetgum tree (Liquidambar orientalis Mill.) wood bark. Kastamonu University Journal of Forestry Faculty, 5(1), 1-5. Retrieved in 2021, May 15, from https://dergipark.org.tr/tr/pub/kastorman/issue/17248/180177

16 Slinkard, K., & Singleton, V. L. (1977). Total phenol analysis: automation and comparison with anual methods. American Journal of Enology and Viticulture, 28, 49-55. Retrieved in 2021, May 15, from https://www.ajevonline.org/content/28/1/49

17 Chang, C.-C., Yang, M.-H., Wen, H.-M., & Chern, J.-C. (2002). Estimation of total flavonoid content in propolis by two complementary colometric methods. Yao Wu Shi Pin Fen Xi, 10(3), 178-182. http://dx.doi.org/10.38212/2224-6614.2748.

18 Benzie, I. F. F., & Szeto, Y. T. (1999). Total antioxidant capacity of teas by the ferric reducing/antioxidant power assay. Journal of Agricultural and Food Chemistry, 47(2), 633-636. http://dx.doi.org/10.1021/jf9807768. PMid:10563944.

19 Apak, R., Güçlü, K., Özyürek, M., & Karademir, S. E. (2004). Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. Journal of Agricultural and Food Chemistry, 52(26), 7970-7981. http://dx.doi.org/10.1021/jf048741x. PMid:15612784.

20 Molyneux, P. (2004). The use of the stable free radical diphenylpicrylhyrazyl (DPPH) for estimating antioxidant activity. Songklanakarin Journal of Science and Technology, 26(2), 211-219. Retrieved in 2021, May 15, from http://rdo.psu.ac.th/sjstweb/journal/26-2/07-DPPH.pdf

21 Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology & Medicine, 26(9-10), 1231-1237. http://dx.doi.org/10.1016/S0891-5849(98)00315-3. PMid:10381194.

22 Collins, C. H., Lyne, P. M., & Grange, J. M. (1995). Collins and Lyne’s microbiological methods. UK: Hodder Education Publishers.

23 Clinical and Laboratory Standards Institute – CLSI. (2015). M07-A10: methods for dilütion antimicrobial susceptibility tests for bacteria that grow aerobically. Wayne: CLSI. Retrieved in 2021, May 15, from https://clsi.org/media/1632/m07a10_sample.pdf

24 Huang, D., Ou, B., & Prıor, R. (2005). The chemistry behind antioxidant capacity assays. Journal of Agricultural and Food Chemistry, 53(6), 1841-1856. http://dx.doi.org/10.1021/jf030723c. PMid:15769103.

25 Zalibera, M., Staško, A., Šlebodová, A., Jančovičová, V., Čermáková, T., & Brezová, V. (2008). Antioxidant and radical-scavenging activities of Slovak honeys: an electron paramagnetic resonance study. Food Chemistry, 110(2), 512-521. http://dx.doi.org/10.1016/j.foodchem.2008.02.015. PMid:26049247.

26 Chitme, H. R., Chandra, R., & Kaushik, S. (2004). Studies on anti-diarrhoeal activity of Calotropis gigantea R.Br. in experimental animals. Journal of Pharmacy & Pharmaceutical Sciences, 7(1), 70-75. PMid:15144737.

27 Palombo, E. A. (2011). Traditional medicinal plant extracts and natural products with activity against oral bacteria: potential application in the prevention and treatment of oral diseases. Evidence-Based Complementary and Alternative Medicine, 2011, 680354. http://dx.doi.org/10.1093/ecam/nep067. PMid:19596745.

28 Köse, M. D., Bayraktar, O., & Balta, A. B. (2016). Antioxidant and antimicrobial activities of extracts from some selected Mediterranean plant species. International Journal of New Technology and Research, 2(5), 113-118. Retrieved in 2021, May 15, from https://www.ijntr.org/antioxidant-and-antimicrobial-activities-of-extracts-from-some-selected-mediterranean-plant-species

29 Ceylan, Ş., Saral, Ö., Özcan, M., & Harşit, B. (2017). Determination of antioxidant and antimicrobial activities of blueberry (Vaccinium myrtillus L.) in different solvent extracts. Artvin Coruh University Journal of Forestry Faculty, 18(1), 21-27. http://dx.doi.org/10.17474/artvinofd.271088.

30 Saraç, N., & Şen, B. (2014). Antioxidant, mutagenic, antimutagenic activities, and phenolic compounds of Liquidambar orientalis Mill. var. orientalis. Industrial Crops and Products, 53, 60-64. http://dx.doi.org/10.1016/j.indcrop.2013.12.015.

31 Sağdıç, O., Özkan, G., Özcan, M., & Özçelik, S. (2005). A Study on inhibitory effects of sığla tree (Liquidambar orientalis Mill. var. orientalis) storax against several bacteria. Phytotherapy Research, 19(6), 549-551. http://dx.doi.org/10.1002/ptr.1654. PMid:16114094.

32 Okmen, G., Turkcan, O., Ceylan, O., & Gork, G. (2014). The antimicrobial activity of a Liquidambar orientalis mill. against food pathogens and antioxidant capacity of leaf extracts. African Journal of Traditional, Complementary, and Alternative Medicines, 11(5), 28-32. http://dx.doi.org/10.4314/ajtcam.v11i5.4. PMid:25395700.

33 Ryan, T., Wilkinson, J. M., & Cavanagh, H. M. A. (2001). Antibacterial activity of raspberry cordial in vitro. Research in Veterinary Science, 71(3), 155-159. http://dx.doi.org/10.1053/rvsc.2001.0502. PMid:11798288.

34 Jimenez-Garcia, S. N., Guevara-Gonzalez, R. G., Miranda-Lopez, R., Feregrino-Perez, A. A., Torres-Pacheco, I., & Vazquez-Cruz, M. A. (2013). Functional properties and quality characteristics of bioactive compounds in berries: biochemistry, biotechnology, and genomics. Food Research International, 54(1), 1195-1207. http://dx.doi.org/10.1016/j.foodres.2012.11.004.

35 Lee, J., Dossett, M., & Finn, C. E. (2012). Rubus fruit phenolic research: the good, the bad, and the confusing. Food Chemistry, 130(4), 785-796. http://dx.doi.org/10.1016/j.foodchem.2011.08.022.

36 Franco Mancarz, G. F., Pareja Lobo, A. C., Baril, M. B., Assis Franco, F., & Nakashima, T. (2016). Antimicrobial and antioxidant activity of the leaves, bark and stems of Liquidambar styraciflua L. (Altingiaceae). International Journal of Current Microbiology and Applied Sciences, 5(1), 306-317. http://dx.doi.org/10.20546/ijcmas.2016.501.029.

37 Mancarz, G. F. F., Laba, L. C., Silva, E. C. P., Prado, M. R. M., Souza, L. M., Souza, D., Nakashima, T., & Mello, R. G. (2019). Liquidambar styraciflua L.: a new potential source for therapeutic uses. Journal of Pharmaceutical and Biomedical Analysis, 174, 422-431. http://dx.doi.org/10.1016/j.jpba.2019.06.003. PMid:31220700.

38 Cordier, W., Steenkamp, V., & Rashed, K. (2016). An evaluation of antioxidant, anticholinesterase and antimicrobial activities of Liquidambar styraciflua L. leaves. Pharmaceutical Research, 14(2), 57-63. Retrieved in 2021, May 15, from https://tphres.innovesen.co.in/an-evaluation-of-antioxidant-anticholinesterase-and-antimicrobial-activities-of-liquidambar-styraciflua-l-leaves

39 Liu, Y. M., Liu, Y. M., & Li, P. X. (2009). Study on antimicrobial activities of essential oil from leaves of Liquidambar formosana Hance as well as its antioxidant activity. Shipin Kexue, 30(11), 134-137. Retrieved in 2021, May 15, from http://www.spkx.net.cn/EN/Y2009/V30/I11/134

40 Shang, H.-J., Li, D.-Y., Wang, W.-J., Li, Z.-L., & Hua, H.-M. (2014). Three new diterpenoids from the resin of Liquidambar formosana. Natural Product Research, 28(1), 1-6. http://dx.doi.org/10.1080/14786419.2013.825915. PMid:23962240.

41 DeCarlo, A., Zeng, T., Dosoky, N. S., Satyal, P., & Setzer, W. N. (2020). The essential oil composition and antimicrobial activity of Liquidambar formosana oleoresin. Plants, 9(7), 822. http://dx.doi.org/10.3390/plants9070822. PMid:32629822.

42 Duh, P.-D., Tu, Y.-Y., & Yen, G.-C. (1999). Antioxidant activity of water extract of harn jyur (Chyrsanthemum morifolium Ramat). Lebensmittel-Wissenschaft + Technologie, 32(5), 269-277. http://dx.doi.org/10.1006/fstl.1999.0548.

43 Cakir, A., Mavi, A., Yıldırım, A., Duru, E., Harmandar, M., & Kazaz, C. (2003). Isolation and characterization of antioxidant phenolic compounds from the aerial parts of Hypericum hyssopifolium L. by activity-guided fractionation. Journal of Ethnopharmacology, 87(1), 73-83. http://dx.doi.org/10.1016/S0378-8741(03)00112-0. PMid:12787957.
 

61a5221aa953953c72323cb8 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections