Polímeros: Ciência e Tecnologia
Polímeros: Ciência e Tecnologia
Original Article

Stabilization of gelatin and carboxymethylcellulose water-in-water emulsion by addition of whey protein

Laranjo, Mayara Rocha; Costa, Bernardo de Sá; Garcia-Rojas, Edwin Elard

Downloads: 0
Views: 56


Due to their aqueous nature and biocompatibility, water/water emulsions are particularly advantageous in the production of low calorie functional food and bioactive carrier microparticles. The aim of this study was to investigate the stability of water/water emulsions formed by gelatin and carboxymethycelullose through the Pickering effect, by addition of whey protein particles. The effect of phase composition and pH on emulsion stability over 3 days of storage was studied and the emulsion properties were characterized. Finally, the effect of the addition of different concentrations of whey protein particles on the emulsion stability was investigated. The added protein particles contributed to reduce the rate of phase separation and higher protein concentration showed this effect more clearly. The time of complete phase separation increased 12 h after addition of 15% (w/w) protein. Emulsions at pH 5.5 with protein particles, however, showed lower stability than those at pH 7.5 without particles.


biocompatibility; biopolymer; Pickering; phase separation.


1 Zhang, J., Hwang, J., Antonietti, M., & Schmidt, B. V. (2018). Water-in-water Pickering emulsion stabilized by polydopamine particles and cross-linking. Biomacromoleculeshttp://dx.doi.org/10.1021/acs.biomac.8b01301. PMid:30395449. 

2 Chen, J.-F., Guo, J., Zhang, T., Wan, Z.-L., Yang, J., & Yang, X.-Q. (2018). Slowing the starch digestion by structural modification through preparing zein/pectin particle stabilized water-in-water emulsion. Journal of Agricultural and Food Chemistry66(16), 4200-4207. http://dx.doi.org/10.1021/acs.jafc.7b05501. PMid:29624058.

3 Beldengrün, Y., Aragon, J., Prazeres, S. F., Montalvo, G., Miras, J., & Esquena, J. (2018). Gelatin/maltodextrin water-in-water (w/w) emulsions for the preparation of cross-linked enzyme-loaded microgels. Langmuir34(33), 9731-9743. http://dx.doi.org/10.1021/acs.langmuir.8b01599. PMid:29954182.

4 Dewey, D. C., Strulson, C. A., Cacace, D. N., Bevilacqua, P. C., & Keating, C. D. (2014). Bioreactor droplets from liposome-stabilized all-aqueous emulsions. Nature Communications5(1), 1-9. http://dx.doi.org/10.1038/ncomms5670. PMid:25140538. 

5 Song, Y., Shimanovich, U., Michaels, T. C. T., Ma, Q., Li, J., Knowles, T. P. J., & Shum, H. C. (2016). Fabrication of fibrillosomes from droplets stabilized by protein nanofibrils at all-aqueous interfaces. Nature Communications7(1), 12934. http://dx.doi.org/10.1038/ncomms12934. PMid:27725629. 

6 Esquena, J. (2016). Water-in-water (W/W) emulsions. Current Opinion in Colloid & Interface Science25, 109-119. http://dx.doi.org/10.1016/j.cocis.2016.09.010.

7 Poortinga, A. T. (2008). Microcapsules from self-assembled colloidal particles using aqueous phase-separated polymer solutions. Langmuir24(5), 1644-1647. http://dx.doi.org/10.1021/la703441e. PMid:18220438. 

8 Chatsisvili, N., Philipse, A. P., Loppinet, B., & Tromp, R. H. (2017). Colloidal zein particles at water-water interfaces. Food Hydrocolloids65, 17-23. http://dx.doi.org/10.1016/j.foodhyd.2016.10.036

9 Douliez, J. P., Martin, N., Beneyton, T., Eloi, J. C., Chapel, J. P., Navailles, L., Baret, J. C., Mann, S., & Béven, L. (2018). Preparation of swellable hydrogel-containing colloidosomes from aqueous two-phase Pickering emulsion droplets. Angewandte Chemie57(26), 7906-7910. http://dx.doi.org/10.1002/ange.201802929. PMid:29683257. 

10 Murray, B. S., & Phisarnchananan, N. (2016). Whey protein microgel particles as stabilizers of waxy corn starch + locust bean gum water-in-water emulsions. Food Hydrocolloids56, 161-169. http://dx.doi.org/10.1016/j.foodhyd.2015.11.032

11 Freitas, R. A., Nicolai, T., Chassenieux, C., & Benyahia, L. (2016). Stabilization of water-in-water emulsions by polysaccharide-coated protein particles. Langmuir32(5), 1227-1232. http://dx.doi.org/10.1021/acs.langmuir.5b03761. PMid:26757399. 

12 Nguyen, B. T., Nicolai, T., & Benyahia, L. (2013). Stabilization of water-in-water emulsions by addition of protein particles. Langmuir29(34), 10658-10664. http://dx.doi.org/10.1021/la402131e. PMid:23895275. 

13 Nicolai, T., & Murray, B. (2017). Particle stabilized water in water emulsions. Food Hydrocolloids68, 157-163. http://dx.doi.org/10.1016/j.foodhyd.2016.08.036

14 Dickinson, E. (2018). Particle-based stabilization of water-in-water emulsions containing mixed biopolymers. Trends in Food Science & Technology. 83:31-40. http://dx.doi.org/10.1016/j.tifs.2018.11.004

15 Huei, C. R., & Hwa, H. D. (1996). Effect of molecular weight of chitosan with the same degree of deacetylation on the thermal, mechanical, and permeability properties of the prepared membrane. Carbohydrate Polymers29(4), 353-358. http://dx.doi.org/10.1016/S0144-8617(96)00007-0

16 Riihimaki, T. A. (1973). Rheological studies of the kinetics of gelation (Master’s dissertation). University of Massachusets, Massachusets. 

17 Kurata, M. (1999). Viscosity-molecular weight relationships and unperturbed dimensions of linear chain molecules. In: J. Brandrup, E. H. Immergut, & E. A. Grulke (Eds.), Polymer handbook (Vol. 7). New York: John Wiley & Sons. http://dx.doi.org/10.1002/0471532053.bra049

18 Perrechil, F. A., & Cunha, R. L. (2012). Development of multiple emulsions based on the repulsive interaction between sodium caseinate and LBG. Food Hydrocolloids26(1), 126-134. http://dx.doi.org/10.1016/j.foodhyd.2011.04.017

19 Singh, P., Medronho, B., Miguel, M. G., & Esquena, J. (2018). On the encapsulation and viability of probiotic bacteria in edible carboxymethylcellulose-gelatin water-in-water emulsions. Food Hydrocolloids75, 41-50. http://dx.doi.org/10.1016/j.foodhyd.2017.09.014

20 Mcclements, D. J. (2005). Food Emulsions: Principles, practices, and techniques. Florida: CRC Press. 

21 Ushikubo, F. Y., & Cunha, R. L. (2014). Stability mechanisms of liquid water-in-oil emulsions. Food Hydrocolloids34, 145-153. http://dx.doi.org/10.1016/j.foodhyd.2012.11.016

22 Gomes, A., Costa, A. L. R., Assis Perrechil, F., & Cunha, R. L. (2016). Role of the phases composition on the incorporation of gallic acid in O/W and W/O emulsions. Journal of Food Engineering168, 205-214. http://dx.doi.org/10.1016/j.jfoodeng.2015.07.041

23 Masuelli, M. A., & Sansone, M. G. (2012). Hydrodynamic properties of gelatin-studies from intrinsic viscosity measurements. In: J. Verbeek. Products and pplications of biopolymers (pp. 85-116). Argentina: InTech. 

24 Ledward, D. A. (2000). Gelatin. In G. O. Phillips & P. A. Williams, Handbook of hydrocolloids (pp. 67-86). United States of America: CRC Press. 

25 Masuelli, M. A. (2014). Mark-Houwink parameters for aqueous-soluble polymers and biopolymers at various temperatures. Journal of Polymer and Biopolymer Physics Chemistry2(2), 37-43. http://dx.doi.org/10.12691/jpbpc-2-2-2

26 Vázquez, M. J., Gómez-Amoza, J., Martínez-Pachelo, R., Souto, C., & Concheiro, A. (1995). Relationships between drug dissolution profile and gelling agent viscosity in tablets prepared with hydroxypropylmethylcellulose (HPMC) and sodium carboxymethylcellulose (NaCMC) mixtures. Drug Development and Industrial Pharmacy21(16), 1859-1874. http://dx.doi.org/10.3109/03639049509070862

27 Sharma, R., Das, B., Nandi, P., & Das, C. (2010). Viscosity of sodium carboxymethylcellulose in ethylene glycol–water mixed solvent media: separation of the influences of polyion conformation and electrostatic interactions on the reduced viscosity. Journal of Polymer Science. Part B, Polymer Physics48(11), 1196-1202. http://dx.doi.org/10.1002/polb.22009

28 Gómez-Díaz, D., & Navaza, J. M. (2003). Rheology of aqueous solutions of food additives: effect of concentration, temperature and blending. Journal of Food Engineering56(4), 387-392. http://dx.doi.org/10.1016/S0260-8774(02)00211-X

29 Rinaudo, M., Danhelka, J., & Milas, M. (1993). A new approach to characterizing carboxymethylcelluloses by size exclusion chromatography. Carbohydrate Polymers21(1), 1-5. http://dx.doi.org/10.1016/0144-8617(93)90109-H

30 Caraschi, J., & Campana, S. P. (1999). Influência do grau de substituição e da distribuição de substituintes sobre as propriedades de equilíbrio de carboximetilcelulose em solução aquosa. Polímeros: Ciência e Tecnologia9(2), 70-77. http://dx.doi.org/10.1590/S0104-14281999000200015

31 Andreas, J. M., Hauser, E. A., & Tucker, W. B. (1938). Boundary tension by pendant drops. Journal of Physical Chemistry42(8), 1001-1019. http://dx.doi.org/10.1021/j100903a002.

32 Mason, T. G., Wilking, J. N., Meleson, K., Chang, C. B., & Graves, S. M. (2006). Nanoemulsions: Formation, structure, and physical properties. Journal of Physics Condensed Matter18(41), R635-R666. http://dx.doi.org/10.1088/0953-8984/18/41/R01

33 Freitas, C., & Müller, R. H. (1998). Effect of light and temperature on zeta potential and physical stability in solid lipid nanoparticle (SLN™) dispersions. International Journal of Pharmaceutics168(2), 221-229. http://dx.doi.org/10.1016/S0378-5173(98)00092-1.

34 Roland, I., Piel, G., Delattre, L., & Evrard, B. (2003). Systematic characterization of oil-in-water emulsions for formulation design. International Journal of Pharmaceutics263(1-2), 85-94. http://dx.doi.org/10.1016/S0378-5173(03)00364-8. PMid:12954183. 

35 Gabas, A. L., Menezes, R. S., & Telis-Romero, J. (2012). Reologia na Indústria de Biocombustíveis. Brazil: Indi. 

36 Masalova, I., Taylor, M., Kharatiyan, E., & Malkin, A. Y. (2005). Rheopexy in highly concentrated emulsions. Journal of Rheology49(4), 839-849. http://dx.doi.org/10.1122/1.1940641

37 Destribats, M., Rouvet, M., Gehin-Delval, C., Schmitt, C., & Binks, B. P. (2014). Emulsions stabilised by whey protein microgel particles: towards food-grade Pickering emulsions. Soft Matter10(36), 6941-6954. http://dx.doi.org/10.1039/C4SM00179F. PMid:24675994. 

38 Wu, J., Shi, M., Li, W., Zhao, L., Wang, Z., Yan, X., Norde, W., & Li, W. (2015). Pickering emulsions stabilized by whey protein nanoparticles prepared by thermal cross-linking. Colloids and Surfaces. B, Biointerfaces127, 96-104. http://dx.doi.org/10.1016/j.colsurfb.2015.01.029. PMid:25660092.

39 Sarkar, A., Murray, B., Holmes, M., Ettelaie, R., Abdalla, A., & Yang, X. (2016). In vitro digestion of Pickering emulsions stabilized by soft whey protein microgel particles: Influence of thermal treatment. Soft Matter12(15), 3558-3569. http://dx.doi.org/10.1039/C5SM02998H. PMid:26959339. 

5e8e57050e88256b411ad513 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections