Polímeros: Ciência e Tecnologia
https://www.revistapolimeros.org.br/article/doi/10.1590/0104-1428.03020
Polímeros: Ciência e Tecnologia
Original Article

Investigation of Lactobacillus paracasei encapsulation in electrospun fibers of Eudragit® L100

Juliana Mikaelly Dias Soares; Ruan Emmanuell Franco Abreu; Mateus Matiuzzi da Costa; Natoniel Franklin de Melo; Helinando Pequeno de Oliveira

Downloads: 0
Views: 597

Abstract

Abstract: encapsulated probiotics represents an essential condition to be considered in new strategies for the controlled release of microorganisms. Herein, the massive encapsulation of Lactobacillus paracasei is provided by the use of alternative electrospinning technique. Is spite of the high voltage required for the production of fibers, a high density of viable cells is observed into the polymeric electrospun web, allowing the controlled release at targeted pH (characteristic of Eudragit® L100 polymer support). The reported procedure circumvents typical drawbacks of degradation of microorganisms under adverse conditions (storage, package and low pH) and preserves its biologic action after complete release from polymer fibers.

 

Keywords

probiotics, encapsulation, electrospinning, food, Lactobacillus

References

1 Akman, P. K., Uysal, E., Ozkaya, G. U., Tornuk, F., & Durak, M. Z. (2019). Development of probiotic carrier dried apples for consumption as snack food with the impregnation of Lactobacillus paracasei. Lebensmittel-Wissenschaft + Technologie, 103, 60-68. http://dx.doi.org/10.1016/j.lwt.2018.12.070.

2 Wu, Z., Wu, J., Cao, P., Jin, Y., Pan, D., Zeng, X., & Guo, Y. (2017). Characterization of probiotic bacteria involved in fermented milk processing enriched with folic acid. Journal of Dairy Science, 100(6), 4223-4229. http://dx.doi.org/10.3168/jds.2017-12640. PMid:28434721.

3 Le, B., & Yang, S. H. (2018). Efficacy of Lactobacillus plantarum in prevention of inflammatory bowel disease. Toxicology Reports, 5, 314-317. http://dx.doi.org/10.1016/j.toxrep.2018.02.007. PMid:29854599.

4 He, D., Wang, Y., Lin, J., Xing, Y.-F., Zeng, W., Zhu, W.-M., Su, N., Zhang, C., Lu, Y., & Xing, X.-H. (2020). Identification and characterization of alcohol-soluble components from wheat germ-apple fermented by Lactobacillus sp. capable of preventing ulcerative colitis of dextran sodium sulfate-induced mice. Journal of Functional Foods, 64, 103642. http://dx.doi.org/10.1016/j.jff.2019.103642.

5 Santos, S. C., Konstantyner, T., & Cocco, R. R. (2020). Effects of probiotics in the treatment of food hypersensitivity in children: a systematic review. Allergologia et Immunopathologia, 48(1), 95-104. http://dx.doi.org/10.1016/j.aller.2019.04.009. PMid:31477401.

6 Cavalcante, R. G. S., Albuquerque, T. M. R., Luna Freire, M. O., Ferreira, G. A. H., Carneiro dos Santos, L. A., Magnani, M., Cruz, J. C., Braga, V. A., Souza, E. L., & Brito Alves, J. L. (2019). The probiotic Lactobacillus fermentum 296 attenuates cardiometabolic disorders in high fat diet-treated rats. Nutrition, Metabolism, and Cardiovascular Diseases, 29(12), 1408-1417. http://dx.doi.org/10.1016/j.numecd.2019.08.003. PMid:31640890.

7 Riaz Rajoka, M. S., Mehwish, H. M., Fang, H., Padhiar, A. A., Zeng, X., Khurshid, M., He, Z., & Zhao, L. (2019). Characterization and anti-tumor activity of exopolysaccharide produced by Lactobacillus kefiri isolated from Chinese kefir grains. Journal of Functional Foods, 63, 103588. http://dx.doi.org/10.1016/j.jff.2019.103588.

8 Vos, P., Faas, M. M., Spasojevic, M., & Sikkema, J. (2010). Encapsulation for preservation of functionality and targeted delivery of bioactive food components. International Dairy Journal, 20(4), 292-302. http://dx.doi.org/10.1016/j.idairyj.2009.11.008.

9 Kailasapathy, K. (2009). Encapsulation technologies for functional foods and nutraceutical product development. Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 4(33), 1-19. http://dx.doi.org/10.1079/PAVSNNR20094033.

10 Sanhueza, E., Paredes-Osses, E., González, C. L., & García, A. (2015). Effect of pH in the survival of Lactobacillus salivarius strain UCO_979C wild type and the pH acid acclimated variant. Electronic Journal of Biotechnology, 18(5), 343-346. http://dx.doi.org/10.1016/j.ejbt.2015.06.005.

11 Kaushik, J. K., Kumar, A., Duary, R. K., Mohanty, A. K., Grover, S., & Batish, V. K. (2009). Functional and probiotic attributes of an indigenous isolate of Lactobacillus plantarum. PLoS One, 4(12), e8099. http://dx.doi.org/10.1371/journal.pone.0008099. PMid:19956615.

12 Xu, M., Gagné-Bourque, F., Dumont, M.-J., & Jabaji, S. (2016). Encapsulation of Lactobacillus casei ATCC 393 cells and evaluation of their survival after freeze-drying, storage and under gastrointestinal conditions. Journal of Food Engineering, 168, 52-59. http://dx.doi.org/10.1016/j.jfoodeng.2015.07.021.

13 Silva, T. M., Deus, C., Souza Fonseca, B., Lopes, E. J., Cichoski, A. J., Esmerino, E. A., Bona da Silva, C., Muller, E. I., Moraes Flores, E. M., & Menezes, C. R. (2019). The effect of enzymatic crosslinking on the viability of probiotic bacteria (Lactobacillus acidophilus) encapsulated by complex coacervation. Food Research International, 125, 108577. http://dx.doi.org/10.1016/j.foodres.2019.108577. PMid:31554127.

14 Dimitrellou, D., Kandylis, P., Lević, S., Petrović, T., Ivanović, S., Nedović, V., & Kourkoutas, Y. (2019). Encapsulation of Lactobacillus casei ATCC 393 in alginate capsules for probiotic fermented milk production. Lebensmittel-Wissenschaft + Technologie, 116, 108501. http://dx.doi.org/10.1016/j.lwt.2019.108501.

15 Yucel Falco, C., Amadei, F., Dhayal, S. K., Cardenas, M., Tanaka, M., & Risbo, J. (2019). Hybrid coating of alginate microbeads based on protein-biopolymer multilayers for encapsulation of probiotics. Biotechnology Progress, 35(3), e2806. http://dx.doi.org/10.1002/btpr.2806. PMid:30884190.

16 Librán, C. M., Castro, S., & Lagaron, J. M. (2017). Encapsulation by electrospray coating atomization of probiotic strains. Innovative Food Science & Emerging Technologies, 39, 216-222. http://dx.doi.org/10.1016/j.ifset.2016.12.013.

17 Yilmaz, M. T., Taylan, O., Karakas, C. Y., & Dertli, E. (2020). An alternative way to encapsulate probiotics within electrospun alginate nanofibers as monitored under simulated gastrointestinal conditions and in kefir. Carbohydrate Polymers, 244, 116447. http://dx.doi.org/10.1016/j.carbpol.2020.116447. PMid:32536387.

18 Tanganurat, P. (2020). Probiotics encapsulated fruit juice bubbles as functional food product. International Journal of GEOMATE, 19(72), 145-150. http://dx.doi.org/10.21660/2020.72.5640.

19 Mojaveri, S. J., Hosseini, S. F., & Gharsallaoui, A. (2020). Viability improvement of Bifidobacterium animalis Bb12 by encapsulation in chitosan/poly(vinyl alcohol) hybrid electrospun fiber mats. Carbohydrate Polymers, 241, 116278. http://dx.doi.org/10.1016/j.carbpol.2020.116278. PMid:32507203.

20 Alfaro-Galarza, O., López-Villegas, E. O., Rivero-Perez, N., Tapia- Maruri, D., Jiménez-Aparicio, A. R., Palma-Rodríguez, H. M., & Vargas-Torres, A. (2020). Protective effects of the use of taro and rice starch as wall material on the viability of encapsulated Lactobacillus paracasei subsp. Paracasei. Lebensmittel-Wissenschaft + Technologie, 117, 108686. http://dx.doi.org/10.1016/j.lwt.2019.108686.

21 Akanny, E., Bourgeois, S., Bonhommé, A., Commun, C., Doleans-Jordheim, A., Bessueille, F., & Bordes, C. (2020). Development of enteric polymer-based microspheres by spray-drying for colonic delivery of Lactobacillus rhamnosus GG. International Journal of Pharmaceutics, 584, 119414. http://dx.doi.org/10.1016/j.ijpharm.2020.119414. PMid:32438040.

22 Nagy, Z. K., Wagner, I., Suhajda, Á., Tobak, T., Harasztos, A. H., Vigh, T., Sóti, P. L., Pataki, H., Molnár, K., & Marosi, G. (2014). Nanofibrous solid dosage form of living bacteria prepared by electrospinning. Express Polymer Letters, 8(5), 352-361. http://dx.doi.org/10.3144/expresspolymlett.2014.39.

23 Fung, W. Y., Yuen, K. H., & Liong, M. T. (2011). Agrowaste-based nanofibers as a probiotic encapsulant: fabrication and characterization. Journal of Agricultural and Food Chemistry, 59(15), 8140-8147. http://dx.doi.org/10.1021/jf2009342. PMid:21711050.

24 Ceylan, Z., Meral, R., Karakaş, C. Y., Dertli, E., & Yilmaz, M. T. (2018). A novel strategy for probiotic bacteria: ensuring microbial stability of fish fillets using characterized probiotic bacteria-loaded nanofibers. Innovative Food Science & Emerging Technologies, 48, 212-218. http://dx.doi.org/10.1016/j.ifset.2018.07.002.

25 Liu, Y., Rafailovich, M. H., Malal, R., Cohn, D., & Chidambaram, D. (2009). Engineering of bio-hybrid materials by electrospinning polymer-microbe fibers. Proceedings of the National Academy of Sciences of the United States of America, 106(34), 14201-14206. http://dx.doi.org/10.1073/pnas.0903238106. PMid:19667172.

26 Heunis, T. D., Botes, M., & Dicks, L. M. (2010). Encapsulation of Lactobacillus plantarum 423 and its bacteriocin in nanofibers. Probiotics and Antimicrobial Proteins, 2(1), 46-51. http://dx.doi.org/10.1007/s12602-009-9024-9. PMid:26780900.

27 Lancuški, A., Abu Ammar, A., Avrahami, R., Vilensky, R., Vasilyev, G., & Zussman, E. (2017). Design of starch-formate compound fibers as encapsulation platform for biotherapeutics. Carbohydrate Polymers, 158, 68-76. http://dx.doi.org/10.1016/j.carbpol.2016.12.003. PMid:28024544.

28 Škrlec, K., Zupančič, Š., Prpar Mihevc, S., Kocbek, P., Kristl, J., & Berlec, A. (2019). Development of electrospun nanofibers that enable high loading and long-term viability of probiotics. European Journal of Pharmaceutics and Biopharmaceutics, 136, 108-119. http://dx.doi.org/10.1016/j.ejpb.2019.01.013. PMid:30660693.

29 Hu, X., Liu, S., Zhou, G., Huang, Y., Xie, Z., & Jing, X. (2014). Electrospinning of polymeric nanofibers for drug delivery applications. Journal of Controlled Release, 185, 12-21. http://dx.doi.org/10.1016/j.jconrel.2014.04.018. PMid:24768792.

30 Correia, D. M., Ribeiro, C., Botelho, G., Borges, J., Lopes, C., Vaz, F., Carabineiro, S. A. C., Machado, A. V., & Lanceros-Méndez, S. (2016). Superhydrophilic poly(l-lactic acid) electrospun membranes for biomedical applications obtained by argon and oxygen plasma treatment. Applied Surface Science, 371, 74-82. http://dx.doi.org/10.1016/j.apsusc.2016.02.121.

31 Wu, J., & Hong, Y. (2016). Enhancing cell infiltration of electrospun fibrous scaffolds in tissue regeneration. Bioactive Materials, 1(1), 56-64. http://dx.doi.org/10.1016/j.bioactmat.2016.07.001. PMid:29744395.

32 Saallah, S., Naim, M. N., Lenggoro, I. W., Mokhtar, M. N., Abu Bakar, N. F., & Gen, M. (2016). Immobilisation of cyclodextrin glucanotransferase into polyvinyl alcohol (PVA) nanofibres via electrospinning. Biotechnology Reports, 10, 44-48. http://dx.doi.org/10.1016/j.btre.2016.03.003. PMid:28352523.

33 Moustafine, R. I. (2014). Role of macromolecular interactions of pharmaceutically acceptable polymers in functioning oral drug delivery systems. Russian Journal of General Chemistry, 84(2), 364-367. http://dx.doi.org/10.1134/S1070363214020388.

34 Ceylan, Z., Uslu, E., İspirli, H., Meral, R., Gavgalı, M., Yilmaz, M. T., & Dertli, E. (2019). A novel perspective for Lactobacillus reuteri: nanoencapsulation to obtain functional fish fillets. Lebensmittel-Wissenschaft + Technologie, 115, 108427. http://dx.doi.org/10.1016/j.lwt.2019.108427.

35 Hu, M. X., Li, J. N., Guo, Q., Zhu, Y. Q., & Niu, H. M. (2019). Probiotics biofilm-integrated electrospun nanofiber membranes: a new starter culture for fermented milk production. Journal of Agricultural and Food Chemistry, 67(11), 3198-3208. http://dx.doi.org/10.1021/acs.jafc.8b05024. PMid:30838858.

36 Cai, Y. (1999). Identification and characterization of Enterococcus species isolated from forage crops and their influence on silage fermentation. Journal of Dairy Science, 82(11), 2466-2471. http://dx.doi.org/10.3168/jds.S0022-0302(99)75498-6. PMid:10575614.

37 Almeida, W. L. G., Jr., Ferrari, Í. S., Souza, J. V., Silva, C. D. A., Costa, M. M., & Dias, F. S. (2015). Characterization and evaluation of lactic acid bacteria isolated from goat milk. Food Control, 53, 96-103. http://dx.doi.org/10.1016/j.foodcont.2015.01.013.

38 Fredricks, D. N., & Relman, D. A. (1998). Improved amplification of microbial DNA from blood cultures by removal of the PCR inhibitor sodium polyanetholesulfonate. Journal of Clinical Microbiology, 36(10), 2810-2816. http://dx.doi.org/10.1128/JCM.36.10.2810-2816.1998. PMid:9738025.

39 Gudiña, E. J., Rocha, V., Teixeira, J. A., & Rodrigues, L. R. (2010). Antimicrobial and antiadhesive properties of a biosurfactant isolated from Lactobacillus paracasei ssp. paracasei A20. Letters in Applied Microbiology, 50(4), 419-424. http://dx.doi.org/10.1111/j.1472-765X.2010.02818.x. PMid:20184670.

40 Feng, K., Zhai, M. Y., Zhang, Y., Linhardt, R. J., Zong, M. H., Li, L., & Wu, H. (2018). Improved viability and thermal stability of the probiotics encapsulated in a novel electrospun fiber. Journal of Agricultural and Food Chemistry, 66(41), 10890-10897. http://dx.doi.org/10.1021/acs.jafc.8b02644. PMid:30260640.

41 Araújo, E. S., Costa, B. P., Oliveira, R. A. P., Libardi, J., Faia, P. M., & Oliveira, H. P. (2016). TiO2/ZnO hierarchical heteronanostructures: synthesis, characterization and application as photocatalysts. Journal of Environmental Chemical Engineering, 4(3), 2820-2829. http://dx.doi.org/10.1016/j.jece.2016.05.021.

42 Santos, T. M. M., Oliveira, P. H., Jr., Ribeiro, L. A. A., & Oliveira, H. P. (2014). Drug/magnetite - loaded enteric particles: the influence of localized magnetic field on controlled release of nifedipine. Asian Journal of Biochemical and Pharmaceutical Research, 4(1), 63-71. Retrieved in 2020, March 13, from https://saepub.com/acc.php?journal_name=AJBPR&volume=4&issue=1

43 Illangakoon, U. E., Yu, D. G., Ahmad, B. S., Chatterton, N. P., & Williams, G. R. (2015). 5-Fluorouracil loaded Eudragit fibers prepared by electrospinning. International Journal of Pharmaceutics, 495(2), 895-902. http://dx.doi.org/10.1016/j.ijpharm.2015.09.044. PMid:26410755.

44 Shah, A., Gani, A., Ahmad, M., Ashwar, B. A., & Masoodi, F. A. (2016). β-Glucan as an encapsulating agent: effect on probiotic survival in simulated gastrointestinal tract. International Journal of Biological Macromolecules, 82, 217-222. http://dx.doi.org/10.1016/j.ijbiomac.2015.11.017. PMid:26562556.

45 Vodnar, D. C., Socaciu, C., Rotar, A. M., & Stãnilã, A. (2010). Morphology, FTIR fingerprint and survivability of encapsulated lactic bacteria (Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus) in simulated gastric juice and intestinal juice. International Journal of Food Science & Technology, 45(11), 2345-2351. http://dx.doi.org/10.1111/j.1365-2621.2010.02406.x.

46 Karwoski, M., Venelampi, O., Linko, P., & Mattila-Sandholm, T. (1995). A staining procedure for viability assessment of starter culture cells. Food Microbiology, 12, 21-29. http://dx.doi.org/10.1016/S0740-0020(95)80075-1.

47 Seo, E.-Y., Ahn, T.-S., & Zo, Y.-G. (2010). Agreement, precision, and accuracy of epifluorescence microscopy methods for enumeration of total bacterial numbers. Applied and Environmental Microbiology, 76(6), 1981-1991. http://dx.doi.org/10.1128/AEM.01724-09. PMid:20097826.

48 Yu, W., Dodds, W. K., Banks, M. K., Skalsky, J., & Strauss, E. A. (1995). Optimal staining and sample storage time for direct microscopic enumeration of total and active bacteria in soil with two fluorescent dyes. Applied and Environmental Microbiology, 61(9), 3367-3372. http://dx.doi.org/10.1128/AEM.61.9.3367-3372.1995. PMid:16535124.

49 Cao-Hoang, L., Marechal, P. A., Le-Thanh, M., Gervais, P., & Wache, Y. (2008). Fluorescent probes to evaluate the physiological state and activity of microbial biocatalysts: a guide for prokaryotic and eukaryotic investigation. Biotechnology Journal, 3(7), 890-903. http://dx.doi.org/10.1002/biot.200700206. PMid:18481263.

50 Powless, A. J., Prieto, S. P., Gramling, M. R., Conley, R. J., Holley, G. G., & Muldoon, T. J. (2019). Evaluation of acridine orange staining for a semi-automated urinalysis microscopic examination at the point-of-care. Diagnostics, 9(3), 122. http://dx.doi.org/10.3390/diagnostics9030122. PMid:31540364.

51 Kurtmann, L., Carlsen, C. U., Risbo, J., & Skibsted, L. H. (2009). Storage stability of freeze-dried Lactobacillus acidophilus (La-5) in relation to water activity and presence of oxygen and ascorbate. Cryobiology, 58(2), 175-180. http://dx.doi.org/10.1016/j.cryobiol.2008.12.001. PMid:19111715.
 

6037b17fa9539549b7655234 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections