Polímeros: Ciência e Tecnologia
https://www.revistapolimeros.org.br/article/doi/10.1590/0104-1428.02718
Polímeros: Ciência e Tecnologia
Original Article

Evaluation of the dispersion of carbon nanotubes in an elastomeric polyurethane and fatigue test

Ferreira, Felipe Luiz Queiroz; Lopes, Magnovaldo Carvalho; Lopes, Ana Paula Mendes; Lavall, Rodrigo Lassarote; Silva, Glaura Goulart

Downloads: 0
Views: 705

Abstract

Two series of polyurethane (PU) and carbon nanotubes (CNT) based composites with 0.0, 0.25, 0.5 and 1.0 mass% of CNT were obtained from diluting a commercial masterbatch with 30 mass% CNT and using two different dispersion methods. The quality of the dispersions was assessed using optical microscopy, and scanning and transmission electron microscopies. These tests showed that high controlled shear stress is necessary to produce composites with nanoscale dispersion: the elastic modulus improved by an average of 38% in the case of the high-shear dispersed materials in comparison with the neat polymer. A specific fatigue test conducted by dynamic mechanical analysis was first used in this work to compare the neat PU with the CNT/PU nanocomposites. The number of cycles to failure increased from 2700 for the neat polymer to 3200 for the 0.5 mass% CNT based nanocomposite; the elongation at failure increased by 145% in the test conditions.

Keywords

carbon nanotubes; elastomeric polyurethane; mechanical properties; fatigue

References

1 Wong, E. W., Sheehan, P. E., & Lieber, C. M. (1997). Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. Science277(5334), 1971-1975. http://dx.doi.org/10.1126/science.277.5334.1971. 

2 Yu, M. F., Lourie, O., Dyer, M. J., Moloni, K., Kelly, T. F., & Ruoff, R. S. (2000). Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science , 287(5453), 637-640. http://dx.doi.org/10.1126/science.287.5453.637. PMid:10649994.

3 Treacy, M. M. J., Ebbesen, T. W., & Gibson, T. M. (1996). Exceptionally high young’s modulus observed for individual carbon nanotubes. Nature381(6584), 680-687. http://dx.doi.org/10.1038/381678a0. 

4 Silva, W. M., Ribeiro, H., Neves, J. C., Sousa, A. R., & Silva, G. G. (2015). Improved impact strength of epoxy by the addition of functionalized multiwalled carbon nanotubes and reactive diluent. Journal of Applied Polymer Science132(19), 42587-42598. http://dx.doi.org/10.1002/APP.42587. 

5 Ribeiro, B., Botelho, E. C., & Costa, M. L. (2015). Estudo das propriedades elétricas e térmicas de compósitos nanoestruturados de poli(sulfeto de fenileno) reforçados com nanotubos de carbono. Polímeros Ciência e Tecnologia25(1), 94-100. http://dx.doi.org/10.1590/0104-1428.1728. 

6 Olowojoba, G., Sathyanarayana, S., Caglar, B., Kiss-Pataki, B., Mikonsaari, I., Hübner, C., & Elsner, P. (2013). Influence of process parameters on the morphology, rheological and dielectric properties of three-roll-milled multiwalled carbon nanotube/epoxy suspensions. Polymer54(1), 188-198. http://dx.doi.org/10.1016/j.polymer.2012.11.054.

7 Yedra, Á., Gutiérrez-Somavilla, G., Manteca-Martínez, C., González-Barriuso, M., & Soriano, L. (2016). Conductive paints development through nanotechnology. Progress in Organic Coatings95, 85-90. http://dx.doi.org/10.1016/j.porgcoat.2016.03.001.

8 Rosca, I. D., & Hoa, S. V. (2009). Highly conductive multiwall carbon nanotube and epoxy composites produced by three-roll milling. Carbon47(8), 1958-1968. http://dx.doi.org/10.1016/j.carbon.2009.03.039. 

9 Lopes, M. C., Trigueiro, J. P. C., Castro, V. G., Lavall, R. L., & Silva, G. G. (2016). Otimização do processo de dispersão de nanotubos de carbono em poliuretano termorrígido. Polímeros: Ciência e Tecnologia26(1), 81-91. http://dx.doi.org/10.1590/0104-1428.2087. 

10 Lopes, M. C., Castro, V. G., Seara, L. M., Diniz, V. P. A., Lavall, R. L., & Silva, G. G. (2014). Thermosetting polyurethane-multiwalled carbon nanotube composites: thermomechanical properties and nanoindentation. Journal of Applied Polymer Science , 131(23), 41207-41214. http://dx.doi.org/10.1002/app.41207. 

11 Kasaliwal, G. R., Pegel, S., Göldel, A., Pötschke, P., & Heinrich, G. (2010). Analysis of agglomerate dispersion mechanisms of multiwalled carbon nanotubes during melt mixing in polycarbonate. Polymer51(12), 2708-2720. http://dx.doi.org/10.1016/j.polymer.2010.02.048. 

12 Müller, T. M., Krause, B., Kretzschmar, B., & Pötschke, P. (2011). Influence of feeding conditions in twin-screw extrusion of PP/MWCNT composites on electrical and mechanical properties. Composites Science and Technology71(13), 1535-1542. http://dx.doi.org/10.1016/j.compscitech.2011.06.003. 

13 Abbasi, S., Derdouri, A., & Carreau, P. J. (2014). Carbon nanotube conductive networks through the double percolation concept in polymer systems. International Polymer Processin29(1), 13-27. http://dx.doi.org/10.3139/217.2778. 

14 Pötschke, P., Fornes, T. D., & Paul, D. R. (2002). Rheological behavior of multiwalled carbon nanotube/polycarbonate composites. Polymer43(11), 3247-3255. http://dx.doi.org/10.1016/S0032-3861(02)00151-9. 

15 Mansour, G., Tsongas, K., Tzetzis, D., & Tzikas, K. (2017). Dynamic mechanical characterization of polyurethane/multi-walled carbon nanotube composite thermoplastic elastomers. Polymer-Plastics Technology and Engineering56(14), 1505-1515. http://dx.doi.org/10.1080/03602559.2016.1277243. 

16 Engels, H. W., Pirkl, H. G., Albers, R., Albach, R. W., Krause, J., Hoffmann, A., Casselmann, H., & Dormish, J. (2013). Polyurethanes: versatile materials and sustainable problem solvers for todays challenges. Angewandte Chemie International Edition , 52(36), 9422-9441. http://dx.doi.org/10.1002/anie.201302766. PMid:23893938. 

17 Aquino, F. G., Sheldrake, T., Clevelario, J., Pires, F., & Coutinho, F. M. B. (2010). Estudo do envelhecimento de poliuretanos aplicados na indústria de petróleo. Polímeros: Ciência e Tecnologia20(1), 33-38. http://dx.doi.org/10.1590/S0104-14282010005000006. 

18 Lima, A. M. F., Castro, V. G., Borges, R. S., & Silva, G. G. (2012). Electrical conductivity and thermal properties of functionalized carbon nanotubes/polyurethane composites. Polímeros Ciência e Tecnologia22(2), 117-124. http://dx.doi.org/10.1590/S0104-14282012005000017. 

19 Loos, M. R., Yang, J., Feke, D. L., Manas-Zloczower, I., Unal, S., & Younes, U. (2013). Enhancement of fatigue life of polyurethane composites containing carbon nanotubes. Composites. Part B, Engineering44(1), 740-744. http://dx.doi.org/10.1016/j.compositesb.2012.01.038. 

20 Shokry, S. A., El Morsi, A. K., Sabaa, M. S., Mohamed, R. R., & El Sorogy, H. E. (2015). Synthesis and characterization of polyurethane based on hydroxyl terminated polybutadiene and reinforced by carbon nanotubes. Egyptian Journal of Petroleum24(2), 145-154. http://dx.doi.org/10.1016/j.ejpe.2015.05.008. 

21 McClory, C., McNally, T., Brennan, G. P., & Erskine, J. (2007). Thermosetting polyurethane multiwalled carbon nanotube composites. Journal of Applied Polymer Science , 105(3), 1003-1011. http://dx.doi.org/10.1002/app.26144. 

22 Rueda-Larraz, L., d’Arlas, B. F., Tercjak, A., Ribes, A., Mondragon, I., & Eceiza, A. (2009). Synthesis and microstructure–mechanical property relationships of segmented polyurethanes based on a PCL–PTHF–PCL block copolymer as soft segment. European Polymer Journal45(7), 2096-2109. http://dx.doi.org/10.1016/j.eurpolymj.2009.03.013. 

23 Jimenez, G., Asai, S., Shishido, A., & Sumita, M. (2000). Effect of the soft segment on the fatigue behavior of segmented polyurethanes. European Polymer Journal , 36(9), 2039-2050. http://dx.doi.org/10.1016/S0014-3057(99)00241-4. 

24 Pichon, P. G., David, L., Méchin, F., & Sautereau, H. (2010). Morphologies of cross-linked segmented polyurethanes. evolution during maturation and consequences on elastic properties and thermal compressive fatigue. Macromolecules , 43(4), 1888-1900. http://dx.doi.org/10.1021/ma901602y. 

25 Nikulin, S. A., Markelov, V. A., Gusev, A. Y., Nechaykina, T. A., Rozhnov, A. B., Rogachev, S. O., & Zadorozhnyy, M. Y. (2013). Low-cycle fatigue tests of zirconium alloys using a dynamic mechanical analyzer. International Journal of Fatigue48, 187-191. http://dx.doi.org/10.1016/j.ijfatigue.2012.10.019. 

26 Aindow, T. T., & O’Neill, J. (2011). Use of mechanical tests to predict durability of polymer fuel cell membranes under humidity cycling. Journal of Power Sources , 196(8), 3851-3854. http://dx.doi.org/10.1016/j.jpowsour.2010.12.031. 

27 Rublon, P., & Favier, A. (2015). Effect of antioxidants on the fatigue crack growth behavior of filled SBR compounds. Procedia Engineering133, 161-170. http://dx.doi.org/10.1016/j.proeng.2015.12.644. 

28 Arkema. (2010). Arkema offers new Graphistrength masterbatches. Additives for Polymers2010(4), 5. http://dx.doi.org/10.1016/S0306-3747(10)70061-0. 

29 Hollertz, R., Chatterjee, S., Gutmann, H., Geiger, T., Nuesch, F. A., & Chu, B. T. T. (2011). Improvement of toughness and electrical properties of epoxy composites with carbon nanotubes prepared by industrially relevant processes. Nanotechnology22(12), 125702. http://dx.doi.org/10.1088/0957-4484/22/12/125702. PMid:21317490. 

5db0484f0e8825db7661d42b polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections