Polímeros: Ciência e Tecnologia
https://www.revistapolimeros.org.br/article/doi/10.1590/0104-1428.02620
Polímeros: Ciência e Tecnologia
Original Article

Synthesis, characterization and thermokinetic analysis of the novel sugar based styrene co-polymer

Fatma Cetin Telli

Downloads: 0
Views: 50

Abstract

A new α-chloralose (1,2-O-(R)-trichloroethylidene-α-D-glucofuranose)-based copolymer of styrene (PSVTEG) (2) was synthesized from vinyl (hydroxyl) furan monomer (1) and styrene by a conventional free radical polymerization reaction. The thermal decomposition kinetics of polymer were investigated by means of thermogravimetric analysis in dynamic nitrogen atmosphere at different heating rates. The apparent activation energy for the main stage thermal decomposition of the copolymer PSVTEG (2) was calculated using the Flynn-Wall-Ozawa and found to be 159.0±3 kj/mol. In addition, the activation energy value was calculated according to Coats-Redfern method and found to be compatible with the obtained result. The thermogram of the glycopolymer (PSVTEG) (2) has two decomposition stages and the calculated activation energy indicated that the main degradation stage is a nonspontaneous process (integral form 1/(1−α)2 for F3).

 

Keywords

glycopolymers, carbohydrate based vinyl copolymer, α-chloralose, thermal analysis, decomposition kinetic

References

1 Pearson, S., Chen, G., & Stenzel, M. H. (2011) Synthesis of Glycopolymers. In R. Narain (Ed.), Engineered carbohydrate-based materials for biomedical applications: polymers, surfaces, dendrimers, nanoparticles, and hydrogels (pp. 1-118). Hoboken: John Wiley & Sons, Inc.

2 Louwrier, A. (1998). Industrial products: the return to carbohydrate - Based industries. Biotechnology and Applied Biochemistry, 27(1), 1-8. http://dx.doi.org/10.1111/j.1470-8744.1998.tb01368.x.

3 Singh, R., Bhattacharya, B., Rhee, H. W., & Singh, P. K. (2015). Solid gellan gum polymer electrolyte for energy application. International Journal of Hydrogen Energy, 40(30), 9365-9372. http://dx.doi.org/10.1016/j.ijhydene.2015.05.084.

4 Methven, J. M. (1991). Polymeric materials from renewable resources. Rapra Review Reports, 4(1), 1-134. http://dx.doi.org/10.1080/15583720701834133.

5 Borges, M.R., Dos Sandos, J.A., Vieira, M., & Balaban R. (2009). Polymerization of a water soluble glucose vinyl ester monomer with tensoactive properties synthesized by enzymatic catalyst. Materials Science and Engineering C, 29(2), 519-523. http://dx.doi.org/10.1016/j.msec.2008.09.013.

6 Varma, A.J., Kennedy, J.F., & Galgali, P. (2004) Synthetic polymers functionalized by carbohydrates: A review. Carbohydrate Polymers, 56(4), 429-445. http://dx.doi.org/10.1016/j.carbpol.2004.03.007.

7 Bertini, V., Pocci, M., Alfei, S., Idini, B., & Lucchesini, F. (2007). Synthesis of crosslinked nanostructured saccharidic vinyl copolymers and their functionalization. Tetrahedron, 63(47), 11672-11680. http://dx.doi.org/10.1016/j.tet.2007.08.106.

8 Sanchez-Chaves, M., Ruiz, C., Cerrada, M. L., & Fernandez-Garcia, M. (2008). Novel glycopolymers containing aminosaccharide pendant groups by chemical modification of ethylene-vinyl alcohol copolymers. Polymer, 49(12), 2801-2807. http://dx.doi.org/10.1016/j.polymer.2008.04.047.

9 Li, S., Jasim, A., Zhao, W., Fu, L., Ullah, M. W., Shi, Z., & Yang, G. (2018). Fabrication of pH-electroactive bacterial cellulose/polyaniline hydrogel for the development of a controlled drug release system. ES Materials & Manufacturing, 1, 41-49. http://dx.doi.org/10.30919/esmm5f120.

10 Du, W., Wang, X., Zhan, J., Sun, X., Kang, L., Jiang, F., Zhang, X., Shao, Q., Dong, M., Liu, H., Murugadoss, V., & Guo, Z. (2019) Biological cell template synthesis of nitrogen-doped porous hollow carbon spheres/MnO2 composites for high-performance asymmetric supercapacitors. Electrochimica Acta, 296, 907-915. http://dx.doi.org/10.1016/j.electacta.2018.11.074.

11 Wang, W., Hao, X., Chen, S., Yang, Z., Wang, C., Yan, R., Zhang, X., Liuc, H., Shaod, Q., & Guo, Z. (2018) pH-responsive Capsaicin@chitosan nanocapsules for antibiofouling in marine applications. Polymer, 158, 223-230. http://dx.doi.org/10.1016/j.polymer.2018.10.067.

12 Kashfipour, M. A., Mehra, N., Dent, R. S., & Zhu, J. (2020). Regulating intermolecular chain interaction of biopolymer with natural polyol for flexible, optically transparent and thermally conductive hybrids. Engineered Science, 8, 11-18. http://dx.doi.org/10.30919/es8d508.

13 Lichtenthaler, F. W., & Peters, S. C. R. (2004). Carbohydrates as green raw materials for the chemical industry. Chimie, 7(2), 65-90. http://dx.doi.org/10.1016/j.crci.2004.02.002.

14 Sampath, C. A., & Edward, T. (2007). Glycosylated polyacrylate nanoparticles by emulsion polymerization. Carbohydrate Polymers, 70(1), 32-37. http://dx.doi.org/10.1016/j.carbpol.2007.02.027. PMid:18677404.

15 Stanek, L. G., Heilmann, S. M., & Gleason, W. B. (2006). Preparation and copolymerization of a novel carbohydrate containing monomer. Carbohydrate Polymers, 65(4), 552-556. http://dx.doi.org/10.1016/j.carbpol.2006.01.021.

16 Vert, M. (2007). Polymeric biomaterials: Strategies of the past vs. strategies of the future. Progress in Polymer Science, 32(8-9), 755-761. http://dx.doi.org/10.1016/j.progpolymsci.2007.05.006.

17 Varma, A. J., Kennedy, J. F., & Galgali, P. (2004). Synthetic polymers functionalized by carbohydrates. Carbohydrate Polymers, 56(4), 429-445. http://dx.doi.org/10.1016/j.carbpol.2004.03.007.

18 Ma, Z., & Zhu, X. X. (2019). Copolymers containing carbohydrates and other biomolecules: Design, synthesis and applications. Journal of Materials Chemistry. B, Materials for Biology and Medicine, 7(9), 1361-1378. http://dx.doi.org/10.1039/C8TB03162B. PMid:32255007.

19 Roy, R., Tropper, F. D., & Romanowska, A. (1992). New strategy in glycopolymer syntheses. Preparation of antigenic water-soluble poly(acrylamideco-p-acrylamido-phenyl beta lactoside). Bioconjugate Chemistry, 3(3), 256-261. http://dx.doi.org/10.1021/bc00015a009. PMid:1520730.

20 Okada, M. (1992). Molecular design and syntheses of glycopolymers. Progress in Polymer Science, 26(1), 67-104. http://dx.doi.org/10.1016/S0079-6700(00)00038-1.

21 Haddleton, D. M., Edmonds, R., Heming, A. M., Kelly, E. J., & Kukulj, D. (1999). Atom transfer polymerisation with glucose and cholesterol derived initiators. New Journal of Chemistry, 23(5), 477-479. http://dx.doi.org/10.1039/a901929d.

22 Ohno, K., Tsujii, Y., & Fukuda, T. (1998). Synthesis of a well-defined glycopolymer by atom transfer radical polymerization. Journal of Polymer Science. Part A, Polymer Chemistry, 36(14), 2473-2481. http://dx.doi.org/10.1002/(SICI)1099-0518(199810)36:14<2473::AID-POLA5>3.0.CO;2-U.

23 Ting, S. R. S., Granville, A. M., Quémener, D., Davis, T. P., Stenzel, M. H., & Barner-Kowollik, C. (2007). RAFT Chemistry and Huisgen 1,3-dipolar cycloaddition:a route to block copolymers of vinyl acetate and 6-O-methacryloylmannose. Australian Journal of Chemistry, 60(6), 405-409. http://dx.doi.org/10.1071/CH07089.

24 Ladmiral, V., Melia, E., & Haddleton, D. M. (2004). Synthetic glycopolymers: An overview. European Polymer Journal, 40(3), 431-449. http://dx.doi.org/10.1016/j.eurpolymj.2003.10.019.

25 Roy, R. (1996). Blue-prints, synthesis and applications of glycopolymers. Trends in Glycoscience and Glycotechnology, 8(40), 79-99. http://dx.doi.org/10.4052/tigg.8.79.

26 Deppe, O., Glümer, A., Yu, S., & Buchholz, K. (2004). Synthesis and co-polymerization of an unsaturated 1,5-anhydro-D-fructose derivative. Carbohydrate Research, 339(12), 2077-2082. http://dx.doi.org/10.1016/j.carres.2004.06.007. PMid:15280052.

27 Ştefan, L. N., Pana, A. M., Pascariu, M. C., Şişu, E., Bandur, G., & Rusnac, L. M. (2011). Synthesis and characterization of a new methacrylic glycomonomer. Turkish Journal of Chemistry, 35, 757-767. http://dx.doi.org/10.3906/kim-1103-63.

28 Fatma, Ç. T. (2015). Syntheses and characterization of new 3-O-Allyl ether chloralose derivatives. Asian Journal of Chemistry, 27(1), 353-356. http://dx.doi.org/10.14233/ajchem.2015.17975.

29 Wulff, G., Schmid, J., & Venhoff, T. (1996). The synthesis of polymerizable vinyl sugars. Macromolecular Chemistry and Physics, 197(1), 259-274. http://dx.doi.org/10.1002/macp.1996.021970120.

30 Klein, J., Herzog, D., & Hajibegli, A. (1985). Poly vinylsaccharides. Synthesis and characterization of polyvinylsaccarides of the urea type. Macromolecular Rapid Communications, 10(12), 629-636. http://dx.doi.org/10.1002/marc.1989.030101203.

31 Klein, J., & Blumenberg, K. (1986). Poly(vinyl saccharide)s, 3†. Synthesis and cationic polymerization of 6‐O‐vinyl‐1,2:3,4‐di‐O‐isopropylidene‐D‐galactopyranose. Macromolecular Rapid Communications, 6(10), 621-625. http://dx.doi.org/10.1002/marc.1986.030071001.

32 Nakamae, K., Miyata, T., Ootsuki, N., Okumura, M., & Kinomura, K. (1994). Surface characterizations of copolymer films with pendant monosaccharides. Macromolecular Chemistry and Physics, 195(6), 1953-1963. http://dx.doi.org/10.1002/macp.1994.021950606.

33 Nakamae, K., Miyata, T., Ootsuki, N., Okumura, M., & Kinomura, K. (1994). Surface studies on copolymers having pendant monosaccharides. Macromolecular Chemistry and Physics, 195(7), 2663-2675. http://dx.doi.org/10.1002/macp.1994.021950733.

34 Wulff, G., & Clarkson, G. (1994). On the synthesis of C-glycosyl compounds containing double bonds without the use of protecting groups. Carbohydrate Research, 257(1), 81-95. http://dx.doi.org/10.1016/0008-6215(94)84109-8.

35 Wulff, G., & Clarkson, G. (1994). New type of polyvinylsaccharides with N,N-dimethyl barbituric acid as a linker between sugar and styrene residue. Macromolecular Chemistry and Physics, 195(7), 2603-2610. http://dx.doi.org/10.1002/macp.1994.021950728.

36 Wulff, G., Schmid, J., & Venhoff, T. (1996). The synthesis of polymerizable vinyl sugars. Macromolecular Chemistry and Physics, 197(1), 259-274. http://dx.doi.org/10.1002/macp.1996.021970120.

37 Wulff, G., Schmid, J., & Venhoff, T. (1996). The preparation of new types of polymerizable vinyl sugars with CC bonds between sugar and double bond. Macromolecular Chemistry and Physics, 197(4), 1285-1299. http://dx.doi.org/10.1002/macp.1996.021970409.

38 Wulff, G., Zhu, L., & Schmidt, H. (1997). Investigations on surface-modified bulk polymers. 1.Copolymers of styrene with a styrene moiety containing a sugar monomer. Macromolecules, 30(16), 4533-4539. http://dx.doi.org/10.1021/ma961890z.

39 Heffter, A. (1889). Ueber die Einwirkung von Chloral auf Glucose. Berichte der Deutschen Chemischen Gesellschaft, 22(1), 1050-1051. http://dx.doi.org/10.1002/cber.188902201230.

40 Hanriot, M., & Richet, C. (1983). D’une substance dérivée du chloral ou chloralose, et de ses effets physiologiques et thérapeutiques. Comptes Rendus Hebdomadaires des Séances de l’Académie des Sciences, 116, 63-65.

41 Hanriot, M. (1909). D'une substance dérivée du chloral ou chloralose, et de ses effets physiologiques et thérapeutiques. Annales de Chimie et de Physique, 18, 466-502.

42 Forsen, S., Lindberg, B., Silvander, B. G., Nilsson, B., Selin, K., & Westerdahl, A. (1965). Trichloroethylidene derivatives of D-glucose. Acta Chemica Scandinavica, 19, 359-369. http://dx.doi.org/10.3891/acta.chem.scand.19-0359.

43 Yenil, N., Ay, E., Ay, K., Oskay, M., & Maddaluno, J. (2010). Synthesis and antimicrobialactivities of two novel amino sugars derived from chloraloses. Carbohydrate Research, 345(11), 1617-1621. http://dx.doi.org/10.1016/j.carres.2010.03.043. PMid:20488435.

44 Salman, Y. G., Makinabakan, O., & Yuceer, L. (1994). Tricyclic orthoester formation from trichloroethylidene acetals of sugars via ketene acetals. Tetrahedron Letters, 35(49), 9233-9236. http://dx.doi.org/10.1016/0040-4039(94)88475-7.

45 Cetin, F., Yenil, N., & Yuceer, L. (2004). Stable spiro-endoperoxides by sunlight-mediated photooxygenation of 1,2-O-alkylidene-5(E)-eno-5,6,8-trideoxy-α-d-xylo-oct-1,4-furano-7-uloses. Carbohydrate Research, 340(17), 2583-2589. http://dx.doi.org/10.1016/j.carres.2005.09.006. PMid:16182263.

46 Telli, F. C., & Yuceer, L. (2012). Synthesis of new spirodifuranose derivatives by reduction of stable spiro-endoperoxides. Journal of Carbohydrate Chemistry, 31(9), 721-731. http://dx.doi.org/10.1080/07328303.2012.739229.

47 Telli, F. C., Ay, K., Murat, G., Kok, G., & Salman, Y. (2013). Acid promoted intramolecular formation of 3,5-anhydro-1,4-furano-7-ulose derivatives via the Wittig-cyclization procedure and their antimicrobial properties. Medicinal Chemistry Research, 22(5), 2253-2259. http://dx.doi.org/10.1007/s00044-012-0218-4.

48 Denizaltı, S., Telli, F. C., Yıldıran, S., Salman, A. Y., & Çetinkaya, B. (2016). The newly synthesized furanoside-based NHC ligands for the arylation of aldehydes. Turkish Journal of Chemistry, 40, 689-697. http://dx.doi.org/10.3906/kim-1603-95.

49 Alkan, S., Telli, F. C., Salman, Y., & Astley, S. T. (2015). Synthesis of novel schiff base ligands from Gluco- and Galactochloraloses for the Cu(II) catalysed asymmetric henry reaction. Carbohydrate Research, 407, 97-103. http://dx.doi.org/10.1016/j.carres.2015.01.023. PMid:25742867.

50 Telli, F. C., Demir, B., Barlas, F. B., Guler, E., Timur, S., & Salman, Y. (2016). Novel Glyconanoconjugates: Synthesis. Characterization and Bioapplications RCS Advances., 6, 105806-105813. http://dx.doi.org/10.1039/C6RA21976D.

51 Xie, P., Li, Y., Hou, Q., Sui, K., Liu, C., Fu, X., Zhang, J., Murugadoss, V., Fan, J., Wang, Y., Fan, R., & Guo, Z. (2020). Tunneling-induced negative permittivity in Ni/MnO nanocomposites by a bio-gel derived strategy. Journal of Materials Chemistry C, 8, 3029-3039. http://dx.doi.org/10.1039/c9tc06378a.

52 Sun, K., Dong, J., Wang, Z., Wang, Z., Fan, G., Hou,Q., An, L., Dong, M., Fan, R., & Guo, Z. (2019). Tunable Negative Permittivity in Flexible Graphene/PDMS Metacomposites. Journal of Physical Chemistry C, 123, 23635-23642. http://dx.doi.org/10.1021/acs.jpcc.9b06753.

53 Sun, K., Wang, L., Wang, Z., Wu, X., Fan, G., Wang, Z., Cheng, C., Fan, R., Dong, M., & Guo, Z. (2019). Flexible silver nanowire/carbon fiber felt metacomposites with weakly negative permittivity behavior. Physical Chemistry Chemical Physics, 22(9), 5114-5122. http://dx.doi.org/10.1039/C9CP06196G. PMid:32073008.

54 Lee, S., Jin, B.S., & Lee, J.W. (2006) Thermal degradation kinetics of antimicrobial agent, Poly(hexamethylene guanidine) phosphate. Macromolecular Research, 14, 491-498.

55 Wang, D., Das, A., Leuteritz, A., Boldt, R., Häußler, L., Wagenknecht, U., & Heinrich, G. (2011). Thermal degradation behaviors of a novel nanocomposite based on polypropylene and Co-Al layered double hydroxide. Polymer Degradation & Stability, 96(3), 285-290. http://dx.doi.org/10.1016/j.polymdegradstab.2010.03.003.

56 Wang, H., Yang, J., Long, S., Wang, X., Yang, Z., & Li, G. (2004). The thermal degradation of poly(phenylene sulfide sulfone). Polymer Degradation & Stability, 83(2), 229-235. http://dx.doi.org/10.1016/S0141-3910(03)00266-0.

57 Coats, A. W., & Redfern, J. P. (1964). Kinetic parameters from thermogravimetric data. Nature, 201(4914), 68-69. http://dx.doi.org/10.1038/201068a0.

58 Flynn, J. H., & Wall, L. A. (1966). A quick direct method for the determination of activation energy from thermogravimetric data. Journal of Polymer Science. Part B, Polymer Physics, 4(5), 323-328. http://dx.doi.org/10.1002/pol.1966.110040504.

59 Ozawa, T. (1965). A new method of analyzing thermogravimetric data. Bulletin of the Chemical Society of Japan, 38(11), 1881-1886. http://dx.doi.org/10.1246/bcsj.38.1881.

60 Mereyala, H. B., Goud, P. M., Gadikota, R. R., & Reddy, K. R. (2000). Transformation of terminal diols of cyclic and acyclic saccharides to epoxides and alkenes by reaction with triphenylphosphine, imidazole and iodine. Journal of Carbohydrate Chemistry, 19(9), 1211-1222. http://dx.doi.org/10.1080/07328300008544145.

61 Pigłowska, M., Kurc, B., Rymaniak, L., Lijewski, P., & Fu’c, P. (2020). Kinetics and thermodynamics of thermal degradation of different starches and estimation the OH group and H2O Content on the Surface byTG/DTG-DTA. Polymers, 12(2), 357-361. http://dx.doi.org/10.3390/polym12020357. PMid:32041286.

62 Yildirim, Y., Dogan, B. S., Muglali, S., Saltan, F., Ozkan, M., & Akat, H. (2012). Synthesis, characterization, and thermal degradation kinetic of Polystyrene-g-Polycaprolactone. Journal of Applied Polymer Science, 126(4), 1236-1246. http://dx.doi.org/10.1002/app.36888.

63 Funt, J. M., & Maghill, J. H. (1974). Thermal decomposition of polystyrene: Eflect of molecular weight. Journal of Polymer Science. Polymer Physics Edition, 12(1), 217-220. http://dx.doi.org/10.1002/pol.1974.180120118.

64 Saltan, F., & Akat, H. (2013). Synthesis and thermal degradation kinetics of D-(+)- GALACTOSE CONTAINING POLYMERS. Polímeros: Ciência e Tecnologia, 23(6), 697-704. http://dx.doi.org/10.4322/polimeros.2014.012.

65 Pană, A. M., Ordodi, V., Rusu, G., Gherman, V., Bandur, G., Rusnac, L. M., & Dumitrel, G. A. (2020). Biodegradation pattern of glycopolymer based on D-Mannose oligomer and Hydroxypropyl Acrylate. Polymers, 12(3), 704-717. http://dx.doi.org/10.3390/polym12030704. PMid:32235772.
 

5f6dec700e8825f90897b914 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections