Polímeros: Ciência e Tecnologia
https://www.revistapolimeros.org.br/article/doi/10.1590/0104-1428.02517
Polímeros: Ciência e Tecnologia
Original Article

Ultrasound assisted miniemulsion polymerization to prepare poly(urea-urethane) nanoparticles

André Eliezer Polloni; Alexsandra Valério; Débora de Oliveira; Pedro Henrique Hermes de Araújo; Claudia Sayer

Downloads: 0
Views: 1098

Abstract

Abstract: Recently, the physical and chemical effects of ultrasound in polymeric materials synthesis have attracted great attention. This work presents the synthesis of novel polymeric materials by polymerization of isophorone diisocyanate with different polyols. Polymers were synthesized by step miniemulsion polymerizations, using ultrasound bath and thermostatic bath. The effects of ultrasound, temperature and polyol type were evaluated by Fourier transform infrared spectroscopy, gel permeation chromatography, dynamic light scattering and titrimetry. Polymerization under ultrasound bath showed that different reaction temperatures in the range between 50 °C and 80 °C directly influence the molecular weight of the polymers, urea/urethane formation and increase of diisocyanate consumption rate. In addition, different polyols used in polymerizations in miniemulsion had a significant effect on the characteristics of the resulting poly(urea-urethane) nanoparticles. Finally, ultrasound assisted polymerizations showed a faster diisocyanate consumption rate, but did not lead to enhanced molecular weights.

Keywords

miniemulsion polymerization, poly(urea-urethane), ultrasound

References

1 Gaudin, F., & Sintes-Zydowicz, N. (2008). Poly(urethane–urea) nanocapsules prepared by interfacial step polymerization in miniemulsion. The droplet size: a key-factor for the molecular and thermal characteristics of the polymeric membrane of the nanocapsules?. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 384(1-3), 698-712. https://doi.org/10.1016/j.colsurfa.2011.05.050.

2 Ding, M., He, X., Wang, Z., Li, J., Tan, H., Deng, H., Fu, Q., & Gu, Q. (2011). Cellular uptake of polyurethane nanocarriers mediated by gemini quaternary ammonium. Biomaterials , 32(35), 9515-9524. PMid:21907404. http://dx.doi.org/10.1016/j.biomaterials.2011.08.074.

3 Souto, E. B., Severino, P., & Santana, M. H. (2012). Preparação de nanopartículas poliméricas a partir da polimerização de monômeros: parte I. Polímeros: Ciência e Tecnologia, 22(1), 96-100. http://dx.doi.org/10.1590/S0104-14282012005000006.

4 Valério, A., Araújo, P. H. H., & Sayer, C. (2013). Preparation of poly(urethane-urea) nanoparticles containing açaí oil by miniemulsion polymerization. Polímeros: Ciência e Tecnologia, 23(4), 451-455. http://dx.doi.org/10.4322/polimeros.2013.088.

5 Mishra, A., Singh, S. H., Dash, D., Aswal, V., Maiti, B., Misra, M., & Maiti, P. (2014). Self-assembled aliphatic chain extended polyurethane nanobiohybrids: Emerging hemocompatible biomaterials for sustained drug delivery. Acta Biomaterialia, 10(5), 2133-2146. PMid:24374322. http://dx.doi.org/10.1016/j.actbio.2013.12.035.

6 Kucinska-Lipka, J., Gubanska, I., Janik, H., & Sienkiewicz, M. (2015). Fabrication of polyurethane and polyurethane based composite fibres by the electrospinning technique for soft tissue engineering of cardiovascular system. Materials Science and Engineering C, 46(1), 166-176. PMid:25491973. http://dx.doi.org/10.1016/j.msec.2014.10.027.

7 Trinca, R. B., & Felisberti, M. I. (2015). Segmented polyurethanes based on poly(L-lactide), poly(ethylene glycol) and poly(trimethylene carbonate): physico-chemical properties and morphology. European Polymer Journal, 62, 77-86. http://dx.doi.org/10.1016/j.eurpolymj.2014.11.008.

8 Hecht, L. L., Winkelmann, M., Wagner, C., Landfester, K., Gerlinger, W., Sachweh, B., & Schuchmann, H. P. (2012). Miniemulsions for the production of nanostructured particles. Chemical Engineering & Technology, 35(9), 1670-1676. http://dx.doi.org/10.1002/ceat.201200196.

9 Steinmacher, F. R., Bernardy, N., Moretto, J. B., Barcelos, E. I., Araújo, P. H. H., & Sayer, C. (2010). Kinetics of MMA and VAc Miniemulsion Polymerizations Using Miglyol and Castor Oil as Hydrophobe and Liquid Core. Chemical Engineering & Technology , 33(11), 1877-1887. http://dx.doi.org/10.1002/ceat.201000256.

10 Landfester, K., Bechthold, N., Tiarks, F., & Antonietti, M. (1999). Formulation and Stability Mechanisms of Polymerizable Miniemulsions. Macromolecules , 32(16), 5222-5228. http://dx.doi.org/10.1021/ma990299+.

11 Asua, J. M. (2002). Miniemulsion polymerization. Progress in Polymer Science , 27(7), 1283-1346. http://dx.doi.org/10.1016/S0079-6700(02)00010-2.

12 Suter, U. W. (2001). Advances in polymer science: new polymerization techniques and synthetic methodologies. New York: Springer-Verlag Berlin Heidelberg.

13 Schork, F. J., Luo, Y., Smulders, W., Russum, J. P., Butté, A., & Fontenot, K. (2005). Advances in polymer science: miniemulsion polymerization. New York: Springer-Verlag Berlin Heidelberg.

14 Ouzineb, K., Lord, C., Lesauze, N., Graillat, C., Tanguy, P. A., & McKenna, T. (2006). Homogenisation devices for the production of miniemulsions. Chemical Engineering Science, 61(9), 2994-3000. http://dx.doi.org/10.1016/j.ces.2005.10.065.

15 Xu, D., Wu, K., Zhang, Q., Hu, H., Xi, K., Chen, Q., Yu, X., Chen, J., & Jia, X. (2010). Synthesis and biocompatibility of anionic polyurethane nanoparticles coated with adsorbed chitosan. Polymer, 51(9), 1926-1933. http://dx.doi.org/10.1016/j.polymer.2010.03.008.

16 Zhou, L., Yu, L., Ding, M., Li, J., Tan, H., Wang, Z., & Fu, Q. (2011). Synthesis and characterization of ph-sensitive biodegradable polyurethane for potential drug delivery applications. Macromolecules, 44(4), 857-864. http://dx.doi.org/10.1021/ma102346a.

17 Miao, S., Wang, P., Su, Z., Liu, Y., & Zhang, S. (2012). Soybean oil‐based shape‐memory polyurethanes: Synthesis and characterization. European Journal of Lipid Science and Technology, 114(12), 1345-1351. http://dx.doi.org/10.1002/ejlt.201200219.

18 Wang, Z., Yu, L., Ding, M., Tan, H., Li, J., & Fu, Q. (2010). Preparation and rapid degradation of nontoxic biodegradable polyurethanes based on poly(lactic acid)‐poly(ethylene glycol)‐poly (lactic acid) and L‐lysine diisocyanate. Polymer Chemistry, 2(3), 601-607. http://dx.doi.org/10.1039/C0PY00235F.

19 Valério, A., da Rocha, S. R. P., Araújo, P. H. H., & Sayer, C. (2013). Degradable polyurethane nanoparticles containing vegetable oils. European Journal of Lipid Science and Technology, 116(1), 24-30. http://dx.doi.org/10.1002/ejlt.201300214.

20 Zanetti-Ramos, B. G., Lemos-Senna, E., Cramail, H., Cloutet, E., Borsali, R., & Soldi, V. (2008). The role of surfactant in the miniemulsion polymerization of biodegradable polyurethane nanoparticles. Materials Science and Engineering C, 28(4), 526-531. http://dx.doi.org/10.1016/j.msec.2007.04.041.

21 Gaudin, F., & Sintes-Zydowicz, N. (2011). Poly(urethane–urea) nanocapsules prepared by interfacial step polymerization in miniemulsion: the droplet size: a key-factor for the molecular and thermal characteristics of the polymeric membrane of the nanocapsules? Colloids and Surfaces A: Physicochemical and Engineering Aspects, 384, 698-712. http://dx.doi.org/10.1016/j.colsurfa.2011.05.050.

22 Barrére, M., & Landfester, K. (2003). High Molecular Weight Polyurethane and Polymer Hybrid Particles in Aqueous Miniemulsion. Macromolecules, 36(14), 5119-5125. http://dx.doi.org/10.1021/ma025981+.

23 Price, G. J. (1996). Ultrasonically enhanced polymer synthesis. Ultrasonics Sonochemistry , 3(3), 229-238. http://dx.doi.org/10.1016/S1350-4177(96)00031-4.

24 Price, G. J., Lenz, E. J., & Ansell, C. W. G. (2002). The effect of high-intensity ultrasound on the ring-opening polymerisation of cyclic lactones. European Polymer Journal , 38(9), 1753-1760. http://dx.doi.org/10.1016/S0014-3057(02)00056-3.

25 Barkade, S. S., Naik, J. B., & Sonawane, S. H. (2011). Ultrasound assisted miniemulsion synthesis of polyaniline/Ag nanocomposite and its application for ethanol vapor sensing. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 378(1-3), 94-98. http://dx.doi.org/10.1016/j.colsurfa.2011.02.002.

26 Bhanvase, B. A., & Sonawane, S. H. (2014). Ultrasound assisted in situ emulsion polymerization for polymer nanocomposite: A review. Chemical Engineering and Processing: Process Intensification, 85, 86-107. http://dx.doi.org/10.1016/j.cep.2014.08.007.

27 Luzzio, F. A., & Moore, W. J. (1993). Ultrasound in oxochromium(VI)-mediated transformations. 2. Ultrasound-mediated preparation and applications of chromyl chloride. The Journal of Organic Chemistry, 58(2), 512-515. http://dx.doi.org/10.1021/jo00054a043.

28 Price, G. J. (2003). Recent developments in sonochemical polymerisation. Ultrasonics Sonochemistry, 10(4-5), 277-283. PMid:12818394. http://dx.doi.org/10.1016/S1350-4177(02)00156-6.

29 Loganathan, S., & Rajendran, V. (2013). Ultrasound assisted polymerization of N-vinyl imidazole under phase-transfer catalysis condition - A kinetic study. Ultrasonics Sonochemistry, 20(1), 308-313. PMid:22922071. http://dx.doi.org/10.1016/j.ultsonch.2012.07.004.

30 Lerin, L. A., Loss, R. A., Remonatto, D., Zenevicz, M. C., Balen, M., Oenning, V., No., Ninow, J. L., Trentin, C. M., Oliveira, J. V., & Oliveira, D. (2014). A review on lipase-catalyzed reactions in ultrasound-assisted systems. Bioprocess and Biosystems Engineering , 37(12), 2381-2394. PMid:24906428. http://dx.doi.org/10.1007/s00449-014-1222-5.

31 Price, G. J., Lenz, E. J., & Ansell, C. W. G. (2002). The effect of high intensity ultrasound on the synthesis of some polyurethanes. European Polymer Journal, 38(8), 1531-1536. http://dx.doi.org/10.1016/S0014-3057(02)00039-3.

32 American Society for Testing and Materials – ASTM. (2003). ASTM D-2572: Standard Test Method for isocyanate Groups in Urethane Materials or Prepolymers . West Conshohocken: ASTM.
 

5b7c562c0e8825b173896e57 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections