Polímeros: Ciência e Tecnologia
Polímeros: Ciência e Tecnologia
Review Article

Advances and perspectives in the use of polymers in the environmental area: a specific case of PBS in bioremediation

Priscilla Braga Antunes Bedor; Rosana Maria Juazeiro Caetano; Fernando Gomes de Souza Júnior; Selma Gomes Ferreira Leite

Downloads: 6
Views: 900


Biodegradable polymers (e.g. poly(butylene succinate) - PBS) have been used in several sectors such as the environmental area, especially in bioremediation, in biological processes for conversion of pollutants into inorganic compounds. In this study, the foresight methodology for the use of biodegradable polymers, including PBS, reveals a publication rate of approximately 8.74 articles and 30.63 patents per year, between 2005 and 2019. However, the application of PBS, specifically, is still restricted to the environmental area, with only 3.0% of the 1484 works from this period. The results showed a more significant number of papers on the PBS application for synthesis, characterization, and application in the areas of Chemistry, Physics, and Pharmacy. In the area of bioremediation, only three studies related to PBS were found, revealing the lack of research and development to increase the contribution in the area of environmental recovery.



biodegradable polymer, biopolymer, bioremediation, foresight methodology, poly(butylene succinate)


1 Patin, S. (2013). Environmental impact of crude oil spills. In S. Patin. Reference module in earth systems and environmental sciences. Cambridge: Elsevier. http://dx.doi.org/10.1016/B978-0-12-409548-9.01221-5

2 Souza, E. C., Vessoni-Penna, T. C., & de Souza Oliveira, R. P. (2014). Biosurfactant-enhanced hydrocarbon bioremediation: an overview. International Biodeterioration & Biodegradation, 89, 88-94. http://dx.doi.org/10.1016/j.ibiod.2014.01.007.

3 Witzler, M., Alzagameem, A., Bergs, M., Khaldi-Hansen, B. E., Klein, S. E., Hielscher, D., Kamm, B., Kreyenschmidt, J., Tobiasch, E., & Schulze, M. (2018). Lignin-derived biomaterials for drug release and tissue engineering. Molecules, 23(8), 1885. http://dx.doi.org/10.3390/molecules23081885. PMid:30060536.

4 Mhlwatika, Z., & Aderibigbe, B. (2018). Polymeric nanocarriers for the delivery of antimalarials. Molecules (Basel, Switzerland), 23(10), 2527. http://dx.doi.org/10.3390/molecules23102527. PMid:30279405.

5 Reis, E. A., Rocha-Leão, M. H. M., & Leite, S. G. F. (2013). Slow-release nutrient capsules for microorganism stimulation in oil remediation. Applied Biochemistry and Biotechnology, 169(4), 1241-1249. http://dx.doi.org/10.1007/s12010-012-0022-0. PMid:23306878.

6 Dzionek, A., Wojcieszyńska, D., & Guzik, U. (2016). Natural carriers in bioremediation: A review. Electronic Journal of Biotechnology, 23, 28-36. http://dx.doi.org/10.1016/j.ejbt.2016.07.003.

7 Chaisorn, W., Prasertsan, P., O-Thong, S., & Methacanon, P. (2016). Production and characterization of biopolymer as bioflocculant from thermotolerant Bacillus subtilis WD161 in palm oil mill effluent. International Journal of Hydrogen Energy, 41(46), 21657-21664. http://dx.doi.org/10.1016/j.ijhydene.2016.06.045.

8 Caetano, R. M. J., Bedor, P. B. A., de Jesus, E. F. O., Leite, S. G. F., & Souza, F. G. Jr (2018). Oil biodegradation systems based on γ irradiated Poly (Butylene Succinate). Macromolecular Symposia, 380(1), 1800123. http://dx.doi.org/10.1002/masy.201800123.

9 Nič, M., Jirát, J., Košata, B., Jenkins, A., & McNaught, A. (2009). Compendium of chemical terminology: Gold Book (2.1.0.). Research Triagle Park, NC: IUPAC. https://doi.org/10.1351/goldbook

10 Doppalapudi, S., Jain, A., Khan, W., & Domb, A. J. (2014). Biodegradable polymers-an overview: BIODEGRADABLE POLYMERS. Polymers for Advanced Technologies, 25(5), 427-435. http://dx.doi.org/10.1002/pat.3305.

11 Hernández, N., Williams, R. C., & Cochran, E. W. (2014). The battle for the “green” polymer. Different approaches for biopolymer synthesis: Bioadvantaged vs. bioreplacement. Organic & Biomolecular Chemistry, 12(18), 2834-2849. http://dx.doi.org/10.1039/C3OB42339E. PMid:24687118.

12 Vinod, A., Sanjay, M. R., Suchart, S., & Jyotishkumar, P. (2020). Renewable and sustainable biobased materials: an assessment on biofibers, biofilms, biopolymers and biocomposites. Journal of Cleaner Production, 258, 120978. http://dx.doi.org/10.1016/j.jclepro.2020.120978.

13 Modi, V. K., Shrives, Y., Sharma, C., Sen, P. K., & Bohidar, S. K. (2007). Review on green polymer nanocomposite and their applications. International Journal of Innovative Research in Science, Engineering and Technology, 3, 17651-17656.

14 Anderson, L. A., Islam, M. A., & Prather, K. L. J. (2018). Synthetic biology strategies for improving microbial synthesis of “green” biopolymers. The Journal of Biological Chemistry, 293(14), 5053-5061. http://dx.doi.org/10.1074/jbc.TM117.000368. PMid:29339554.

15 Velichko, N. S., Grinev, V. S., & Fedonenko, Y. P. (2020). Characterization of biopolymers produced by planktonic and biofilm cells of Herbaspirillum lusitanum P6-12. Journal of Applied Microbiology, jam.14647. http://dx.doi.org/10.1111/jam.14647. PMid:32216024.

16 Xu, Y., Xu, J., Liu, D., Guo, B., & Xie, X. (2008). Synthesis and characterization of biodegradable poly(butylene succinate-co-propylene succinate)s. Journal of Applied Polymer Science, 109(3), 1881-1889. http://dx.doi.org/10.1002/app.24544.

17 Rajan, K. P., Thomas, S. P., Gopanna, A., & Chavali, M. (2019). Polyhydroxybutyrate (PHB): A standout biopolymer for environmental sustainability. In L. M. T. Martínez, O. V. Kharissova, & B. I. Kharisov (Eds.), Handbook of ecomaterials (pp. 2803-2825). Cham: Springer International Publishing. http://dx.doi.org/10.1007/978-3-319-68255-6_92

18 Jaiswal, L., Shankar, S., & Rhim, J.-W. (2019). Applications of nanotechnology in food microbiology. In V. Gurtler, A. S. Ball, S. Soni. Methods in microbiology (Vol. 46, pp. 43-60). Cambridge: Elsevier. https://doi.org/10.1016/bs.mim.2019.03.002

19 Islam, M., & Martinez-Duarte, R. (2017). A sustainable approach for tungsten carbide synthesis using renewable biopolymers. Ceramics International, 43(13), 10546-10553. http://dx.doi.org/10.1016/j.ceramint.2017.05.118.

20 Vetrik, M., Mattova, J., Mackova, H., Kucka, J., Pouckova, P., Kukackova, O., Brus, J., Eigner-Henke, S., Sedlacek, O., Sefc, L., Stepanek, P., & Hruby, M. (2018). Biopolymer strategy for the treatment of Wilson’s disease. Journal of Controlled Release, 273, 131-138. http://dx.doi.org/10.1016/j.jconrel.2018.01.026. PMid:29407674.

21 Ceccacci, A. C., Chen, C.-H., Hwu, E.-T., Morelli, L., Bose, S., Bosco, F. G., & Boisen, A. (2017). Blu-Ray-based micromechanical characterization platform for biopolymer degradation assessment. Sensors and Actuators. B, Chemical, 241, 1303-1309. http://dx.doi.org/10.1016/j.snb.2016.09.190.

22 Lopez-Rubio, A., Fabra, M. J., Martinez-Sanz, M., Mendoza, S., & Vuong, Q. V. (2017). Biopolymer-based coatings and packaging structures for improved food quality. Journal of Food Quality, 1-2, 1-2. http://dx.doi.org/10.1155/2017/2351832.

23 Moschakis, T., & Biliaderis, C. G. (2017). Biopolymer-based coacervates: Structures, functionality and applications in food products. Current Opinion in Colloid & Interface Science, 28, 96-109. http://dx.doi.org/10.1016/j.cocis.2017.03.006.

24 Jung, E. Y., Jin, S. K., & Hur, S. J. (2018). Analysis of the effects of biopolymer encapsulation and sodium replacement combination technology on the quality characteristics and inhibition of sodium absorption from sausage in mice. Food Chemistry, 250, 197-203. http://dx.doi.org/10.1016/j.foodchem.2018.01.065. PMid:29412911.

25 Park, S.-B., Lih, E., Park, K.-S., Joung, Y. K., & Han, D. K. (2017). Biopolymer-based functional composites for medical applications. Progress in Polymer Science, 68, 77-105. http://dx.doi.org/10.1016/j.progpolymsci.2016.12.003.

26 Singh, B. G., Das, R. P., & Kunwar, A. (2019). Protein: a versatile biopolymer for the fabrication of smart materials for drug delivery. Journal of Chemical Sciences, 131(9), 91. http://dx.doi.org/10.1007/s12039-019-1671-0.

27 Sithole, M. N., Choonara, Y. E., du Toit, L. C., Kumar, P., Marimuthu, T., Kondiah, P. P. D., & Pillay, V. (2018). Development of a novel Polymeric Nanocomposite complex for drugs with low bioavailability. AAPS PharmSciTech, 19(1), 303-314. http://dx.doi.org/10.1208/s12249-017-0796-z. PMid:28717975.

28 Agostini de Moraes, M., Cocenza, D. S., Cruz Vasconcellos, F., Fraceto, L. F., & Beppu, M. M. (2013). Chitosan and alginate biopolymer membranes for remediation of contaminated water with herbicides. Journal of Environmental Management, 131, 222-227. http://dx.doi.org/10.1016/j.jenvman.2013.09.028. PMid:24178315.

29 Song, W., Gao, B., Xu, X., Xing, L., Han, S., Duan, P., Song, W., & Jia, R. (2016). Adsorption-desorption behavior of magnetic amine/Fe3O4 functionalized biopolymer resin towards anionic dyes from wastewater. Bioresource Technology, 210, 123-130. http://dx.doi.org/10.1016/j.biortech.2016.01.078. PMid:26852273.

30 Narayanan, N., Gupta, S., Gajbhiye, V. T., & Manjaiah, K. M. (2017). Optimization of isotherm models for pesticide sorption on biopolymer-nanoclay composite by error analysis. Chemosphere, 173, 502-511. http://dx.doi.org/10.1016/j.chemosphere.2017.01.084. PMid:28131920.

31 El Asjadi, S., Nederpel, Q. A., Cotiuga, I. M., Picken, S. J., Besseling, N. A. M., Mendes, E., & Lommerts, B. J. (2018). Biopolymer scleroglucan as an emulsion stabilizer. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 546, 326-333. http://dx.doi.org/10.1016/j.colsurfa.2018.02.035.

32 Song, W., Gao, B., Wang, H., Xu, X., Xue, M., Zha, M., & Gong, B. (2017). The rapid adsorption-microbial reduction of perchlorate from aqueous solution by novel amine-crosslinked magnetic biopolymer resin. Bioresource Technology, 240, 68-76. http://dx.doi.org/10.1016/j.biortech.2017.03.064. PMid:28341379.

33 Lopez-Pena, C. L., & McClements, D. J. (2015). Impact of a food-grade cationic biopolymer (ε-polylysine) on the digestion of emulsified lipids: in vitro study. Food Research International, 75, 34-40. http://dx.doi.org/10.1016/j.foodres.2015.05.025. PMid:28454965.

34 La Mantia, F. P., Ceraulo, M., Mistretta, M. C., & Morreale, M. (2018). Rheological behaviour, mechanical properties and processability of biodegradable polymer systems for film blowing. Journal of Polymers and the Environment, 26(2), 749-755. http://dx.doi.org/10.1007/s10924-017-0995-4.

35 Hsu, S.-T., & Yao, Y. L. (2013). Effect of drug loading and laser surface melting on drug release profile from biodegradable polymer. Journal of Applied Polymer Science, 130(6), 4147-4156. https://doi.org/10.1002/app.39664

36 Tan, L., Jiang, T., Yang, X., Li, W., Pan, L., & Yu, M. (2015). Core-shell biopolymer microspheres for sustained drug release. Journal of Applied Polymer Science, 132(14). https://doi.org/10.1002/app.41782

37 Rizzarelli, P., & Carroccio, S. (2014). Modern mass spectrometry in the characterization and degradation of biodegradable polymers. Analytica Chimica Acta, 808, 18-43. http://dx.doi.org/10.1016/j.aca.2013.11.001. PMid:24370091.

38 Ding, M., Zhang, M., Yang, J., & Qiu, J.-H. (2012). Study on the enzymatic degradation of aliphatic polyester-PBS and its copolymers. Journal of Applied Polymer Science, 124(4), 2902-2907. http://dx.doi.org/10.1002/app.35347.

39 Song, W., Gao, B., Xu, X., Wang, F., Xue, N., Sun, S., Song, W., & Jia, R. (2016). Adsorption of nitrate from aqueous solution by magnetic amine-crosslinked biopolymer based corn stalk and its chemical regeneration property. Journal of Hazardous Materials, 304, 280-290. http://dx.doi.org/10.1016/j.jhazmat.2015.10.073. PMid:26561752.

40 Wilton, N., Lyon-Marion, B. A., Kamath, R., McVey, K., Pennell, K. D., & Robbat, A. Jr (2018). Remediation of heavy hydrocarbon impacted soil using biopolymer and polystyrene foam beads. Journal of Hazardous Materials, 349, 153-159. http://dx.doi.org/10.1016/j.jhazmat.2018.01.041. PMid:29414747.

41 Tanida, I., Sakaue, A., & Osawa, S. (2014). Development of a safe solid-state microorganism/biodegradable polymer composite for decomposition of Formaldehyde. Journal of Polymers and the Environment, 22(3), 329-335. http://dx.doi.org/10.1007/s10924-014-0644-0.

42 Baric, M., Pierro, L., Pietrangeli, B., & Papini, M. P. (2014). Polyhydroxyalkanoate (PHB) as a slow-release electron donor for advanced in situ bioremediation of chlorinated solvent-contaminated aquifers. New Biotechnology, 31(4), 377-382. http://dx.doi.org/10.1016/j.nbt.2013.10.008. PMid:24185077.

43 Geeti, D. K., & Niranjan, K. (2019). Environmentally benign bio-based waterborne polyesters: Synthesis, thermal- and bio-degradation studies. Progress in Organic Coatings, 127, 419-428. http://dx.doi.org/10.1016/j.porgcoat.2018.11.034.

44 Liminana, P., Garcia-Sanoguera, D., Quiles-Carrillo, L., Balart, R., & Montanes, N. (2018). Development and characterization of environmentally friendly composites from poly(butylene succinate) (PBS) and almond shell flour with different compatibilizers. Composites. Part B, Engineering, 144, 153-162. http://dx.doi.org/10.1016/j.compositesb.2018.02.031.

45 Figueiredo, A. S., Icart, L. P., Marques, F. D., Fernandes, E. R., Ferreira, L. P., Oliveira, G. E., & Souza, F. G. Jr (2019). Extrinsically magnetic poly(butylene succinate): an up-and-coming petroleum cleanup tool. The Science of the Total Environment, 647, 88-98. http://dx.doi.org/10.1016/j.scitotenv.2018.07.421. PMid:30077858.

46 Sarmah, P., & Rout, J. (2020). Role of algae and cyanobacteria in bioremediation: prospects in polyethylene biodegradation. In P. K. Singh, A. Kumar, V. K. Singh, A. K. Shrivastava. Advances in cyanobacterial biology (pp. 333-349). Cambridge: Elsevier. http://dx.doi.org/10.1016/B978-0-12-819311-2.00022-X

47 Wang, T., Yu, C., Chu, Q., Wang, F., Lan, T., & Wang, J. (2020). Adsorption behavior and mechanism of five pesticides on microplastics from agricultural polyethylene films. Chemosphere, 244, 125491. http://dx.doi.org/10.1016/j.chemosphere.2019.125491. PMid:31835051.

48 Saiful Amran, S. N. B., Wongso, V., Abdul Halim, N. S., Husni, M. K., Sambudi, N. S., & Wirzal, M. D. H. (2019). Immobilized carbon-doped TiO 2 in polyamide fibers for the degradation of methylene blue. Journal of Asian Ceramic Societies, 7(3), 321-330. http://dx.doi.org/10.1080/21870764.2019.1636929.

49 Ogunleye, A., Bhat, A., Irorere, V. U., Hill, D., Williams, C., & Radecka, I. (2015). Poly-γ-glutamic acid: production, properties and applications. Microbiology, 161(1), 1-17. http://dx.doi.org/10.1099/mic.0.081448-0. PMid:25288645.

50 Sun, Y., Chen, A., Pan, S.-Y., Sun, W., Zhu, C., Shah, K. J., & Zheng, H. (2019). Novel chitosan-based flocculants for chromium and nickle removal in wastewater via integrated chelation and flocculation. Journal of Environmental Management, 248, 109241. http://dx.doi.org/10.1016/j.jenvman.2019.07.012. PMid:31306928.

51 Alver, E., Metin, A. Ü., & Brouers, F. (2020). Methylene blue adsorption on magnetic alginate/rice husk bio-composite. International Journal of Biological Macromolecules, 154, 104-113. http://dx.doi.org/10.1016/j.ijbiomac.2020.02.330. PMid:32135251.

52 Zhao, X., Wang, X., Song, G., & Lou, T. (2020). Microwave assisted copolymerization of sodium alginate and dimethyl diallyl ammonium chloride as flocculant for dye removal. International Journal of Biological Macromolecules, 156, 585-590. http://dx.doi.org/10.1016/j.ijbiomac.2020.04.054. PMid:32305372.

53 Marchand, C., St-Arnaud, M., Hogland, W., Bell, T. H., & Hijri, M. (2017). Petroleum biodegradation capacity of bacteria and fungi isolated from petroleum-contaminated soil. International Biodeterioration & Biodegradation, 116, 48-57. http://dx.doi.org/10.1016/j.ibiod.2016.09.030.

54 Barnes, N. M., Khodse, V. B., Lotlikar, N. P., Meena, R. M., & Damare, S. R. (2018). Bioremediation potential of hydrocarbon-utilizing fungi from select marine niches of India. 3 Biotech, 8(1), 1-10. https://doi.org/10.1007/s13205-017-1043-8

55 Li, P., Cai, Q., Lin, W., Chen, B., & Zhang, B. (2016). Offshore oil spill response practices and emerging challenges. Marine Pollution Bulletin, 110(1), 6-27. http://dx.doi.org/10.1016/j.marpolbul.2016.06.020. PMid:27393213.

56 Rodrigues, C., Núñez-Gómez, D., Silveira, D. D., Lapolli, F. R., & Lobo-Recio, M. A. (2019). Chitin as a substrate for the biostimulation of sulfate-reducing bacteria in the treatment of mine-impacted water (MIW). Journal of Hazardous Materials, 375, 330-338. http://dx.doi.org/10.1016/j.jhazmat.2019.02.086. PMid:30826155.

57 Agnello, A. C., Bagard, M., van Hullebusch, E. D., Esposito, G., & Huguenot, D. (2016). Comparative bioremediation of heavy metals and petroleum hydrocarbons co-contaminated soil by natural attenuation, phytoremediation, bioaugmentation and bioaugmentation-assisted phytoremediation. The Science of the Total Environment, 563–564, 693-703. http://dx.doi.org/10.1016/j.scitotenv.2015.10.061. PMid:26524994.

58 Sánchez, Ó. J., Ospina, D. A., & Montoya, S. (2017). Compost supplementation with nutrients and microorganisms in composting process. Waste Management, 69, 136-153. http://dx.doi.org/10.1016/j.wasman.2017.08.012. PMid:28823698.

59 Lee, D. W., Lee, H., Kwon, B.-O., Khim, J. S., Yim, U. H., Kim, B. S., & Kim, J.-J. (2018). Biosurfactant-assisted bioremediation of crude oil by indigenous bacteria isolated from Taean beach sediment. Environmental Pollution, 241, 254-264. http://dx.doi.org/10.1016/j.envpol.2018.05.070. PMid:29807284.

60 Sheu, Y.-T., Tsang, D. C. W., Dong, C.-D., Chen, C.-W., Luo, S.-G., & Kao, C.-M. (2018). Enhanced bioremediation of TCE-contaminated groundwater using gamma poly-glutamic acid as the primary substrate. Journal of Cleaner Production, 178, 108-118. http://dx.doi.org/10.1016/j.jclepro.2017.12.212.

61 Farber, R., Dabush-Busheri, I., Chaniel, G., Rozenfeld, S., Bormashenko, E., Multanen, V., & Cahan, R. (2019). Biofilm grown on wood waste pretreated with cold low-pressure nitrogen plasma: utilization for toluene remediation. International Biodeterioration & Biodegradation, 139, 62-69. http://dx.doi.org/10.1016/j.ibiod.2019.03.003.

62 Ismail, A. S., El-Sheshtawy, H. S., & Khalil, N. M. (2019). Bioremediation process of oil spill using fatty-lignocellulose sawdust and its enhancement effect. Egyptian Journal of Petroleum, 28(2), 205-211. http://dx.doi.org/10.1016/j.ejpe.2019.03.002.

63 San Keskin, N. O., Celebioglu, A., Sarioglu, O. F., Uyar, T., & Tekinay, T. (2018). Encapsulation of living bacteria in electrospun cyclodextrin ultrathin fibers for bioremediation of heavy metals and reactive dye from wastewater. Colloids and Surfaces. B, Biointerfaces, 161, 169-176. http://dx.doi.org/10.1016/j.colsurfb.2017.10.047. PMid:29078166.

64 Patowary, R., Patowary, K., Kalita, M. C., & Deka, S. (2018). Application of biosurfactant for enhancement of bioremediation process of crude oil contaminated soil. International Biodeterioration & Biodegradation, 129, 50-60. http://dx.doi.org/10.1016/j.ibiod.2018.01.004.

65 Nowak, K., Wiater, A., Choma, A., Wiącek, D., Bieganowski, A., Siwulski, M., & Waśko, A. (2019). Fungal (1 → 3)-α-d-glucans as a new kind of biosorbent for heavy metals. International Journal of Biological Macromolecules, 137, 960-965. http://dx.doi.org/10.1016/j.ijbiomac.2019.07.036. PMid:31284010.

66 Olajuyigbe, F. M., Adetuyi, O. Y., & Fatokun, C. O. (2019). Characterization of free and immobilized laccase from Cyberlindnera fabianii and application in degradation of bisphenol A. International Journal of Biological Macromolecules, 125, 856-864. http://dx.doi.org/10.1016/j.ijbiomac.2018.12.106. PMid:30557644.

67 Miles, I., Saritas, O., & Sokolov, A. (2016). Foresight for Science, Technology and Innovation. Cham: Springer International Publishing. http://dx.doi.org/10.1007/978-3-319-32574-3

68 Niaounakis, M. (2015). Biopolymers: applications and trends. Amsterdam: Elsevier Science.

69 Bechthold, I., Bretz, K., Kabasci, S., Kopitzky, R., & Springer, A. (2008). Succinic Acid: A New Platform Chemical for Biobased Polymers from Renewable Resources. Chemical Engineering & Technology, 31(5), 647-654. http://dx.doi.org/10.1002/ceat.200800063.

70 Xu, J., & Guo, B.-H. (2010). Poly(butylene succinate) and its copolymers: Research, development and industrialization. Biotechnology Journal, 5(11), 1149-1163. http://dx.doi.org/10.1002/biot.201000136. PMid:21058317.

71 Ferreira, L. P., Moreira, A. N., Pinto, J. C., & de Souza, F. G. Jr (2015). Synthesis of poly(butylene succinate) using metal catalysts. Polymer Engineering and Science, 55(8), 1889-1896. http://dx.doi.org/10.1002/pen.24029.

72 Siracusa, V., Lotti, N., Munari, A., & Dalla Rosa, M. (2015). Poly(butylene succinate) and poly(butylene succinate-co-adipate) for food packaging applications: gas barrier properties after stressed treatments. Polymer Degradation & Stability, 119, 35-45. http://dx.doi.org/10.1016/j.polymdegradstab.2015.04.026.

73 Gigli, M., Fabbri, M., Lotti, N., Gamberini, R., Rimini, B., & Munari, A. (2016). Poly(butylene succinate)-based polyesters for biomedical applications: A review. European Polymer Journal, 75, 431-460. http://dx.doi.org/10.1016/j.eurpolymj.2016.01.016.

74 Pérez, D. D., Lunz, J. S. C., Santos, E. R. F., Oliveira, G. E., Jesus, E. F. O., & Souza, F. G. Jr (2017). Poly (Butylene Succinate) Scaffolds Prepared by Leaching. MOJ Polymer Science, 1(6). http://dx.doi.org/10.15406/mojps.2017.01.00035.

75 Soares, D. Q. P., Souza, F. G. Jr, Freitas, R. B. V., Soares, V. P., Ferreira, L. P., Ramon, J. A., & Oliveira, G. E. (2017). Praziquantel Release Systems Based on Poly(Butylene Succinate)/Po lyethylene Glycol Nanocomposites. Current Applied Polymer Science, 1(1), 45-51. http://dx.doi.org/10.2174/2452271601666160922163508.

76 Miranda Sa, L. T., Vicosa, A. L., da Rocha, S. R. P., & de Souza, F. G. Jr (2018). Synthesis and characterization of Poly (Butylene Succinate)-G-Poly (Vinyl Acetate) as Ibuprofen drug delivery system. Current Applied Polymer Science, 1(2). http://dx.doi.org/10.2174/2452271601666170620125607.

77 Moraes, R. S. (2018). Synthesis of magnetic composite of poly (butylene succinate) and magnetite for the controlled release of meloxicam. MOJ Polymer Science, 2(1), 4. http://dx.doi.org/10.15406/mojps.2018.02.00044.

78 Ramon, J., Saez, V., Gomes, F., Pinto, J., & Nele, M. (2018). Synthesis and characterization of PEG-PBS copolymers to obtain microspheres with different naproxen release profiles. Macromolecular Symposia, 380(1), 1800065. http://dx.doi.org/10.1002/masy.201800065.

79 Dvorackova, M., Svoboda, P., Kostka, L., & Pekarova, S. (2015). Influence of biodegradation in thermophilic anaerobic aqueous conditions on crystallization of poly(butylene succinate). Polymer Testing, 47, 59-70. http://dx.doi.org/10.1016/j.polymertesting.2015.08.006.

80 Thirunavukarasu, K., Purushothaman, S., Sridevi, J., Aarthy, M., Gowthaman, M. K., Nakajima-Kambe, T., & Kamini, N. R. (2016). Degradation of poly(butylene succinate) and poly(butylene succinate-co-butylene adipate) by a lipase from yeast Cryptococcus sp. grown on agro-industrial residues. International Biodeterioration & Biodegradation, 110, 99-107. http://dx.doi.org/10.1016/j.ibiod.2016.03.005.

81 Huang, Z., Qian, L., Yin, Q., Yu, N., Liu, T., & Tian, D. (2018). Biodegradability studies of poly(butylene succinate) composites filled with sugarcane rind fiber. Polymer Testing, 66, 319-326. http://dx.doi.org/10.1016/j.polymertesting.2018.02.003.

82 Zhu, S.-M., Deng, Y.-L., Ruan, Y.-J., Guo, X.-S., Shi, M.-M., & Shen, J.-Z. (2015). Biological denitrification using poly(butylene succinate) as carbon source and biofilm carrier for recirculating aquaculture system effluent treatment. Bioresource Technology, 192, 603-610. http://dx.doi.org/10.1016/j.biortech.2015.06.021. PMid:26093254.

83 Ruan, Y.-J., Deng, Y.-L., Guo, X.-S., Timmons, M. B., Lu, H.-F., Han, Z.-Y., Ye, Z. Y., Shi, M. M., & Zhu, S. M. (2016). Simultaneous ammonia and nitrate removal in an airlift reactor using poly(butylene succinate) as carbon source and biofilm carrier. Bioresource Technology, 216, 1004-1013. http://dx.doi.org/10.1016/j.biortech.2016.06.056. PMid:27343453.

84 Eubeler, J. P., Bernhard, M., & Knepper, T. P. (2010). Environmental biodegradation of synthetic polymers II. Biodegradation of different polymer groups. Trends in Analytical Chemistry, 29(1), 84-100. http://dx.doi.org/10.1016/j.trac.2009.09.005.

85 Luo, G., Li, L., Liu, Q., Xu, G., & Tan, H. (2014). Effect of dissolved oxygen on heterotrophic denitrification using poly(butylene succinate) as the carbon source and biofilm carrier. Bioresource Technology, 171, 152-158. http://dx.doi.org/10.1016/j.biortech.2014.08.055. PMid:25194264.

86 an Duan, L., Li, C., Li, L., Yu, H., & Zhiying, H. (2016). Denitrification performance using biodegradable polymer as carbon source to treat nitrified swine wastwater. In 2016 ASABE International Meeting. St. Joseph: International Meeting, American Society of Agricultural and Biological Engineers. https://doi.org/10.13031/aim.20162462945

87 Cho, H. S., Moon, H. S., Kim, M., Nam, K., & Kim, J. Y. (2011). Biodegradability and biodegradation rate of poly(caprolactone)-starch blend and poly(butylene succinate) biodegradable polymer under aerobic and anaerobic environment. Waste Management, 31(3), 475-480. http://dx.doi.org/10.1016/j.wasman.2010.10.029. PMid:21144726.

88 Pan, W., Bai, Z., Su, T., & Wang, Z. (2018). Enzymatic degradation of poly(butylene succinate) with different molecular weights by cutinase. International Journal of Biological Macromolecules, 111, 1040-1046. http://dx.doi.org/10.1016/j.ijbiomac.2018.01.107. PMid:29366885.

89 Nanni, A., & Messori, M. (2020). Thermo-mechanical properties and creep modelling of wine lees filled Polyamide 11 (PA11) and Polybutylene succinate (PBS) bio-composites. Composites Science and Technology, 188, 107974. http://dx.doi.org/10.1016/j.compscitech.2019.107974.

90 Zhang, M., Li, Y., Wang, L., & Li, S. (2020). Compatibility and mechanical properties of gelatin‐filled polybutylene succinate composites. Journal of Applied Polymer Science, 137(29), 48881. http://dx.doi.org/10.1002/app.48881.

91 Liu, P., Yue, X., He, G., Zhang, X., & Sun, Y. (2020). Influence of modified fiber-MHSH hybrids on fire hazards, combustion dynamics, and mechanical properties of flame‐retarded poly(butylene succinate) composites. Journal of Applied Polymer Science, 137(12), 48490. http://dx.doi.org/10.1002/app.48490.

5f6ded460e8825910a97b914 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections