Polímeros: Ciência e Tecnologia
https://www.revistapolimeros.org.br/article/doi/10.1590/0104-1428.02020
Polímeros: Ciência e Tecnologia
Original Article

Electropolymerization of polyaniline nanowires on poly(2-hydroxyethyl methacrylate) coated Platinum electrode

Maria Fernanda Xavier Pinto Medeiros; Maria Elena Leyva; Alvaro Antonio Alencar de Queiroz; Liliam Becheran Maron

Downloads: 0
Views: 579

Abstract

A platinum electrode (Pt) was coated with poly(2-hydroxyethyl methacrylate) (PHEMA) by electrochemical polymerization using chronopotentiometry. Electropolymerization of polyaniline nanowires doped with camphorsulfonic acid (PANI:CSA) was further performed on the surface of the Pt-PHEMA electrode by cyclic voltammetry. The coated Pt-PHEMA-PANI:CSA electrode was characterized by Fourier transform infrared spectroscopy (FTIR), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and scanning electron microscopy (SEM). According to EIS, the Pt-PHEMA electrode exhibits a charge transport resistance (Rct) of 169.19 kΩ. The EIS analysis of Pt-PHEMA-PANI:CSA electrode reveals a less resistive character (Rct=1.28 Ω) than the observed for the Pt electrode coated with PANI:CSA (Rct=0.47 kΩ). As demonstrated by SEM, the Pt-PHEMA-PANI:CSA electrode has a high surface area due to the PANI:CSA nanowires embedded in Pt-PHEMA. The biocompatibility of PHEMA, allied to the electrochemical characteristics of PANI:CSA, could be useful to the development of implantable electrodes for biomedical applications.

Keywords

electroactive hydrogels, chronopotentiometry, cyclic voltammetry, polyaniline, poly(2-hydroxyethyl methacrylate)

References

1 Chung, A. J., Kim, D., & Erickson, D. (2008). Electrokinetic microfluidic devices for rapid, low power drug delivery in autonomous microsystems. Lab on a Chip, 8(2), 330-338. http://dx.doi.org/10.1039/B713325A. PMid:18231674.

2 Abidian, M. R., & Martin, C. D. (2009). Neural interface biomaterials: multifunctional nanobiomaterials for neural interfaces. Advanced Functional Materials, 19(4), 573-585. http://dx.doi.org/10.1002/adfm.200801473.

3 Muller, R., Yue, Z., Ahmadi, S., Ng, W., Grosse, W. M., Cook, M. J., Wallace, G. G., & Moulton, S. E. (2016). Development and validation of a seizure initiated drug delivery system for the treatment of epilepsy. Sensors and Actuators. B, Chemical, 236, 732-740. http://dx.doi.org/10.1016/j.snb.2016.06.038.

4 Kim, D.-H., Abidian, M. R., & Martin, D. C. (2004). Conducting polymers grown in hydrogel scaffolds coated on neural prosthetic devices. Journal of Biomedical Materials Research. Part A, 71(4), 577-585. http://dx.doi.org/10.1002/jbm.a.30124. PMid:15514937.

5 Green, R. A., Lovell, H. N., Wallace, G. G., & Poole-Warren, A. L. (2008). Conducting polymers for neural interfaces: challenges in developing an effective long-term implant. Biomaterials, 29(24-25), 3393-3399. http://dx.doi.org/10.1016/j.biomaterials.2008.04.047. PMid:18501423.

6 Abidian, M. R., Corey, J. M., Kipke, D. R., & Martin, D. C. (2010). Conducting-polymer nanotubes improve electrical properties, mechanical adhesion, neural attachment, and neurite outgrowth of neural electrodes. Small, 6(3), 421-429. http://dx.doi.org/10.1002/smll.200901868. PMid:20077424.

7 He, L., Lin, D., Wang, Y., Xiao, Y., & Che, J. (2011). Electroactive SWNT/PEGDA hybrid hydrogel coating for bio-electrode interface. Colloids and Surfaces. B, Biointerfaces, 87(2), 273-279. http://dx.doi.org/10.1016/j.colsurfb.2011.05.028. PMid:21676598.

8 Brahim, S., & Guiseppi-Elie, A. (2005). Electroconductive Hydrogels: Electrical and Electrochemical Properties of Polypyrrole-Poly(HEMA) composites. Electroanalysis, 17(7), 556-570. http://dx.doi.org/10.1002/elan.200403109.

9 Guiseppi-Elie, A. (2010). Electroconductive hydrogels: synthesis, characterization and biomedical applications. Biomaterials, 31(10), 2701-2716. http://dx.doi.org/10.1016/j.biomaterials.2009.12.052. PMid:20060580.

10 Guo, B., Finne-Wistrand, A., & Albertsson, A. C. (2011). Degradable and Electroactive Hydrogels with Tunable Electrical Conductivity and Swelling Behavior. Chemistry of Materials, 23(5), 1254-1262. http://dx.doi.org/10.1021/cm103498s.

11 Kotanen, C. N., Wilson, A. N., Dong, C., Dinu, C. Z., Justin, G. A., & Guiseppi-Elie, A. (2013). The effect of the physicochemical properties of bioactive electroconductive hydrogels on the growth and proliferation of attachment dependent cells. Biomaterials, 34(27), 6318-6327. http://dx.doi.org/10.1016/j.biomaterials.2013.05.022. PMid:23755835.

12 Pérez-Martínez, C. J., Morales Chávez, S. D., del Castillo-Castro, T., Lara Ceniceros, T. E., Castillo-Ortega, M. M., Rodríguez-Félix, D. E., & Gálvez Ruiz, J. C. (2016). Electroconductive nanocomposite hydrogel for pulsatile drug release. Reactive & Functional Polymers, 100, 12-17. http://dx.doi.org/10.1016/j.reactfunctpolym.2015.12.017.

13 Schwartz, A. B. (2004). Cortical neural prosthetics. Annual Review of Neuroscience, 27(1), 487-507. http://dx.doi.org/10.1146/annurev.neuro.27.070203.144233. PMid:15217341.

14 Polikov, V. S., Tresco, A. P., & Reichert, M. W. (2005). Response of brain tissue to chronically implanted neural electrodes. Journal of Neuroscience Methods, 148(1), 1-18. http://dx.doi.org/10.1016/j.jneumeth.2005.08.015. PMid:16198003.

15 Xie, K., Wang, S., Aziz, T. Z., Stein, J. F., & Liu, X. (2006). The physiologically modulated electrode potentials at the depth electrode–brain interface in humans. Neuroscience Letters, 402(3), 238-243. http://dx.doi.org/10.1016/j.neulet.2006.04.015. PMid:16697525.

16 Prashantha, K., Vasanta, K., Pai, K., & Sherigara, B. S. (2002). Electrochemical synthesis of poly[2-Hydroxyethylmethacrylate] hydrogel: kinetics and mechanism. Journal of Applied Polymer Science, 84(5), 983-992. http://dx.doi.org/10.1002/app.10299.

17 De Giglio, E., Cometa, S., Ricci, M. A., Cafagna, D., Savino, A. M., Sabbatini, L., Orciani, M., Ceci, E., Novello, L., Tantillo, G. M., & Mattioli-Belmonte, M. (2011). Ciprofloxacin-modified electrosynthesized hydrogel coatings to prevent titanium-implant-associated infections. Acta Biomaterialia, 7(2), 882-891. http://dx.doi.org/10.1016/j.actbio.2010.07.030. PMid:20659594.

18 De Giglio, E., Cometa, S., Satriano, C., Sabbatini, L., & Zambonin, P. G. (2009). Electrosynthesis of hydrogel films on metal substrates for the development of coatings with tunable drug delivery performances. Journal of Biomedical Materials Research. Part A, 88(4), 1048-1057. http://dx.doi.org/10.1002/jbm.a.31908. PMid:18404708.

19 De Giglio, E., Cafagna, D., Giangregorio, M. M., Domingos, M., Mattioli-Belmonte, M., & Cometa, S. (2011). PHEMA-based thin hydrogel films for biomedical applications. Journal of Bioactive and Compatible Polymers, 26(4), 420-434. http://dx.doi.org/10.1177/0883911511410460.

20 Humpolicek, P., Kasparkova, V., Saha, P., & Stejskal, J. (2012). Biocompatibility of polyaniline. Synthetic Metals, 162(7-8), 722-727. http://dx.doi.org/10.1016/j.synthmet.2012.02.024.

21 Xia, Y., Wiesinger, J. M., MacDiarmid, A. G., & Epstein, A. J. (1995). Camphorsulfonic acid fully doped polyaniline emeraldine salt: conformations in different solvents studied by an ultraviolet/visible/near-infrared spectroscopic method. Chemistry of Materials, 7(5), 443-445. http://dx.doi.org/10.1021/cm00051a002.

22 Zhang, X., & Manohar, S. K. (2004). Polyaniline nanofibers: chemical synthesis using surfactants. Chemical Communications, 2004(20), 2360-2361. http://dx.doi.org/10.1039/b409309g. PMid:15490020.

23 Baute, N., Martinot, L., & Jérôme, R. (1999). Investigation of the cathodic electropolymerization of acrylonitrile, ethylacrylate and methylmethacrylate by coupled quartz crystal microbalance analysis and cyclic voltammetry. Journal of Electroanalytical Chemistry, 472(1), 83-90. http://dx.doi.org/10.1016/S0022-0728(99)00275-2.

24 Decker, C., Vataj, R., & Louati, A. (2004). Synthesis of acrylic polymer networks by electroinitiated polymerization. Progress in Organic Coatings, 50(4), 263-268. http://dx.doi.org/10.1016/j.porgcoat.2004.03.005.

25 De Giglio, E., Cometa, S., Cioffi, N., Torsi, L., & Sabbatini, L. (2007). Analytical investigations of poly(acrylic acid) coatings electrodeposited on titanium-based implants: a versatile approach to biocompatibility enhancement. Analytical and Bioanalytical Chemistry, 389(7-8), 2055-2063. http://dx.doi.org/10.1007/s00216-007-1299-7. PMid:17516054.

26 Babaiee, M., Pakshir, M., & Hashemi, B. (2015). Effects of potentiodynamicelectropolymerization parameters on electrochemical properties and morphology of fabricated PANI nanofiber/graphite electrode. Synthetic Metals, 199, 110-120. http://dx.doi.org/10.1016/j.synthmet.2014.11.012.

27 Ali, N., Duan, X., Jiang, Z.-T., Goh, B. M., Lamb, R., Tadich, A., Poinern, G. E. J., Fawcett, D., Chapman, P., & Singh, P. (2014). Surface and interface analysis of poly-hydroxyethylmethacrylate-coated anodic aluminium oxide membranes. Applied Surface Science, 289, 560-563. http://dx.doi.org/10.1016/j.apsusc.2013.11.042.

28 Namazi, H., Kabiri, R., & Entezami, A. (2002). Determination of extremely low percolation threshold electroactivity of the blend polyvinyl chloride/polyaniline doped with camphorsulfonic acid by cyclic voltammetry method. European Polymer Journal, 38(4), 771-777. http://dx.doi.org/10.1016/S0014-3057(01)00232-4.

29 Pruneanu, S., Veress, E., Marian, I., & Oniciu, L. (1999). Characterization of polyaniline by cyclic voltammetry and UV-Vis absorption spectroscopy. Journal of Materials Science, 34(11), 2733-2739. http://dx.doi.org/10.1023/A:1004641908718.

30 Vyas, R. N., & Wang, B. (2010). Electrochemical analysis of conducting polymer thin films. International Journal of Molecular Sciences, 11(4), 1956-1972. http://dx.doi.org/10.3390/ijms11041956. PMid:20480052.
 

5f1049000e8825cb4be52f60 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections