Polímeros: Ciência e Tecnologia
https://www.revistapolimeros.org.br/article/doi/10.1590/0104-1428.01218
Polímeros: Ciência e Tecnologia
Original Article

The influence of fiber size on the behavior of the araucaria pine nut shell/PU composite

Protzek, Giuliana Ribeiro; Magalhães, Washington Luiz Esteves; Bittencourt, Paulo Rodrigo Stival; Claro Neto, Salvador; Villanova, Rodrigo Lupinacci; Azevedo, Elaine Cristina

Downloads: 3
Views: 810

Abstract

The use of araucaria pine nut shell in polymer composites may increase the pine nut value and help protec araucaria (Araucaria angustifolia) itself, which is an endangered species. The aim of this work is to study the influence of the size of pine nut shell fiber on the mechanical properties of composites made of this shell and polyurethane derived from castor oil. Composites with different polyurethane contents were manufactured with dried untreated pine nut shell sieved through 30 and 50 mesh sieves (0.6 and 0.3 mm, respectively). Composites were shaped by mechanical mixing of the components followed by hot pressing. Properties such as density, water absorption, and flexural strength were measured. Specimens were also characterized by SEM, FTIR, and TGA. The flexural strength of PU/0.3mm pine nut shell composites with 30% PU (wt%) was 57.7 MPa, and their water absorption was 7.37% after 24 hours of immersion.

Keywords

araucaria pine nut shell; composite; castor oil; polyurethane; mechanical properties

References

1 Lemos, A. L., & Martins, R. M. (2014). Desenvolvimento e caracterização de compósitos poliméricos à base de Poli(Ácido Lático) e fibras naturais. Polímeros: Ciência e Tecnologia24(2), 190-197. http://dx.doi.org/10.4322/polimeros.2014.047

2 Ligowski, E., Santos, B. C., & Fujiwara, S. T. (2015). Materiais compósitos a base de fibras da cana-de-açúcar e polímeros reciclados obtidos através da técnica de extrusão. Polímeros: Ciência e Tecnologia25(1), 70-75. http://dx.doi.org/10.1590/0104-1428.1605.

3 Dong, C., & Davies, I. J. (2012). Flexural properties of macadamia nutshell particle reinforced polyester composites. Composites. Part B, Engineering43(7), 2751-2756. http://dx.doi.org/10.1016/j.compositesb.2012.04.035.

4 Beltrami, L. V. R., Scienza, L. C., & Zattera, A. J. (2014). Efeito do tratamento alcalino de fibras de curauá sobre as propriedades de compósitos de matriz biodegradável. Polímeros: Ciência e Tecnologia24(3), 388-394. http://dx.doi.org/10.4322/polimeros.2014.024

5 Nadlene, R., Sapuan, S. M., Jawaid, M., Ishak, M. R., & Yusriah, L. (2018). The effects of chemical treatment on the structural and thermal, physical, and mechanical and morphological properties of roselle fiber-reinforced vinyl ester composites. Polymer Composites39(1), 274-287. http://dx.doi.org/10.1002/pc.23927

6 Milanese, A. C., Cioffi, M. O. H., & Voorwald, H. J. C. (2012). Flexural behavior of sisal/castor oil-based polyurethane and sisal/phenolic composites. Materials Research15(2), 191-197. http://dx.doi.org/10.1590/S1516-14392012005000019

7 Mei, L. H., & Oliveira, N. (2017). Caracterização de um compósito polimérico biodegradável utilizando Poli (ε-caprolactona) e borra de café. Polímeros: Ciência e Tecnologia27(7), 99-109. https://doi.org/10.1590/0104-1428.2139

8 Fernandes, J. R., Moisés, M. P., Girotto, E. M., Favaro, S. L., & Radovanovic, E. (2017). Nanopartículas de sílica silanizada como compatibilizante em compósitos de fibras de sisal/polietileno. Polímeros: Ciência e Tecnologia27(spe), 61-69. https://doi.org/10.1590/0104-1428.2249

9 Spadetti, C., Silva, E. A., Fo., Sena, G. L., & Melo, C. V. P. (2017). Propriedades térmicas e mecânicas dos compósitos de Polipropileno pós-consumo reforçados com fibras de celulose. Polímeros: Ciência e Tecnologia, 27(spe), 84-90. https://doi.org/10.1590/0104-1428.2320

10 Mano, B., Araujo, J. R., De Paoli, M.-A., Waldman, W. R., & Spinace, M. A. (2013). Mechanical properties, morphology and thermal degradation of a biocomposite of polypropylene and curaua fibers: coupling agent effect. Polímeros: Ciência e Tecnologia23(2), 161-168. http://dx.doi.org/10.1590/S0104-14282013005000025.

11 Vasco, M. C., Claro, S., No., Nascimento, E. M., & Azevedo, E. (2017). Gamma radiation effect on sisal/polyurethane composites without coupling agents. Polímeros: Ciência e Tecnologia27(2), 165-170. http://dx.doi.org/10.1590/0104-1428.05916

12 de Farias, J. G. G., Cavalcante, R. C., Canabarro, B. R., Viana, H. M., Scholz, S., & Simão, R. A. (2017). Surface lignin removal on coir fibers by plasma treatment for improved adhesion in thermoplastic starch composites. Carbohydrate Polymers165, 429-436. http://dx.doi.org/10.1016/j.carbpol.2017.02.042. PMid:28363569.

13 Scalici, T., Fiore, V., & Valenza, A. (2016). Effect of plasma treatment on the properties of Arundo Donax L. leaf fibres and its bio-based epoxy composites: a preliminary study. Composites. Part B, Engineering94, 167-175. http://dx.doi.org/10.1016/j.compositesb.2016.03.053

14 Azevedo, E. C., Nascimento, E. M., Chierice, G. O., Claro, S., No., & Lepienski, C. M. (2013). UV and gamma irradiation effects on surface properties of polyurethane derivate from castor oil. Polímeros Ciência e Tecnologia23(3), 305-311. http://dx.doi.org/10.4322/polimeros.2013.087.

15 Marinho, N. P., Nascimento, E. M., Nisgoski, S., Magalhães, W. L. E., & Neto, C. S., & Azevedo, E. C. (2013). Caracterização física e térmica de compósito de poliuretano derivado de óleo de mamona associado com partículas de bambu. Polímeros: Ciência e Tecnologia23(2), 201-205. https://doi.org//10.4322/S0104-14282013005000007

16 Merlini, C., Soldi, V., & Barra, G. M. O. O. (2011). Influence of fiber surface treatment and length on physico-chemical properties of short random banana fiber-reinforced castor oil polyurethane composites. Polymer Testing30(8), 833-840. http://dx.doi.org/10.1016/j.polymertesting.2011.08.008

17 Zau, M. D. L., Vasconcelos, R. P., Giacon, V. M., & Lahr, F. A. R. (2014). Avaliação das propriedades química, física e mecânica de painéis aglomerados produzidos com resíduo de madeira da Amazônia - Cumaru (Dipteryx Odorata) e resina poliuretana à base de óleo de mamona. Polímeros: Ciência e Tecnologia24(6), 726-732. http://dx.doi.org/10.1590/0104-1428.1594

18 Orellana, E., Figueiredo, A., Fo., Péllico, S., No., & Vanclay, J. K. (2017). A distance-independent individual-tree growth model to simulate management regimes in native Araucaria forests. Journal of Forest Research22(1), 30-35. http://dx.doi.org/10.1080/13416979.2016.1258961

19 Fichino, B. S., Pivello, V. R., & Santos, R. F. (2017). Trade-offs among ecosystem services under different pinion harvesting intensities in Brazilian Araucaria Forests. The International Journal of Biodiversity Science, Ecosystem Services & Management13(1), 139-149. http://dx.doi.org/10.1080/21513732.2016.1275811.

20 Boff Zortéa-Guidolin, M. E., Piler de Carvalho, C. W., Bueno de Godoy, R. C., Mottin Demiate, I., & Paula Scheer, A. (2017). Influence of extrusion cooking on in vitro digestibility, physical and sensory properties of brazilian pine seeds flour (Araucaria Angustifolia). Journal of Food Science82(4), 977-984. http://dx.doi.org/10.1111/1750-3841.13686. PMid:28339105.

21 Lima, E. C., Royer, B., Vaghetti, J. C. P., Brasil, J. L., Simon, N. M., Santos, A. A., Jr., Pavan, F. A., Dias, S. L. P., Benvenutti, E. V., & Silva, E. A. (2007). Adsorption of Cu(II) on Araucaria angustifolia wastes: determination of the optimal conditions by statistic design of experiments. Journal of Hazardous Materials140(1-2), 211-220. http://dx.doi.org/10.1016/j.jhazmat.2006.06.073. PMid:16876938.

22 Poletto, M., Zattera, A. J., Forte, M. M. C., & Santana, R. M. C. (2012). Thermal decomposition of wood: Influence of wood components and cellulose crystallite size. Bioresource Technology109, 148-153. http://dx.doi.org/10.1016/j.biortech.2011.11.122. PMid:22306076. 

23 Brasil, J. L., Ev, R. R., Milcharek, C. D., Martins, L. C., Pavan, F. A., Santos, A. A., Jr., Dias, S. L., Dupont, J., Zapata Noreña, C. P., & Lima, E. C. (2006). Statistical design of experiments as a tool for optimizing the batch conditions to Cr(VI) biosorption on Araucaria angustifolia wastes. Journal of Hazardous Materials133(1-3), 143-153. http://dx.doi.org/10.1016/j.jhazmat.2005.10.002. PMid:16297543. 

24 Ahmed Sbia, L., Peyvandi, A., Soroushian, P., Balachandra, A. M., & Sobolev, K. (2015). Evaluation of modified-graphite nanomaterials in concrete nanocomposite based on packing density principles. Construction & Building Materials76, 413-422. http://dx.doi.org/10.1016/j.conbuildmat.2014.12.019

25 Azevedo, E. C., Claro, S., No., Chierice, G. O., & Lepienski, C. M. (2009). Aplicação de indentação instrumentada na caracterização mecânica de poliuretana derivada de óleo de mamona. Polímeros: Ciência e Tecnologia19(4), 336-343. http://dx.doi.org/10.1590/S0104-14282009000400014

26 Azevedo, E. C., Chierice, G. O., Claro, S., No., Soboll, D. S., Nascimento, E. M., & Lepienski, C. M. (2011). Gamma radiation effects on mechanical properties and morphology of a polyurethane derivate from castor oil. Radiation Effects and Defects in Solids166(3), 208-214. http://dx.doi.org/10.1080/10420150.2010.525235

27 Ornaghi, H. l., Jr., Moraes, Á. G. D. O., Polletto, M., Zattera, A. J., & Amico, S. C. (2016). Chemical composition, tensile properties and structural characterization of buriti fiber. Cellulose Chemistry and Technology50(1), 15-22. Retrieved in 2018, April 10, from http://www.cellulosechemtechnol.ro/pdf/CCT1(2016)/p.15-22.pdf 

28 Li, X., Lei, B., Lin, Z., Huang, L., Tan, S., & Cai, X. (2014). The utilization of bamboo charcoal enhances wood plastic composites with excellent mechanical and thermal properties. Materials & Design53, 419-424. http://dx.doi.org/10.1016/j.matdes.2013.07.028

29 Trovati, G., Sanches, E. A., Neto, S. C., Mascarenhas, Y. P., & Chierice, G. O. (2010). Characterization of polyurethane resins by FTIR, TGA, and XRD. Journal of Applied Polymer Science115(1), 263-268. http://dx.doi.org/10.1002/app.31096

30 Luo, Z., Li, P., Cai, D., Chen, Q., Qin, P., Tan, T., & Cao, H. (2017). Comparison of performances of corn fiber plastic composites made from different parts of corn stalk. Industrial Crops and Products95, 521-527. http://dx.doi.org/10.1016/j.indcrop.2016.11.005.

31 Obi Reddy, K., Uma Maheswari, C., Shukla, M., Song, J. I., & Varada Rajulu, A. (2013). Tensile and structural characterization of alkali treated Borassus fruit fine fibers. Composites. Part B, Engineering44(1), 433-438. http://dx.doi.org/10.1016/j.compositesb.2012.04.075.

5db0b3880e8825832b61d429 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections