Polímeros: Ciência e Tecnologia
https://www.revistapolimeros.org.br/article/doi/10.1590/0104-1428.01019
Polímeros: Ciência e Tecnologia
Original Article

System to measure torsion modulus of polymers using the deformation energy method

Pintão, Carlos Alberto Fonzar; Piedade, Lucas Pereira; Borali, Edgar

Downloads: 0
Views: 667

Abstract

This paper presents an alternative method to measure the torsion modulus, G, for samples of polymers. We constructed a measurement system with a force sensor (FS) and a rotational movement sensor (RMS) to obtain a relationship between force (F) and torsion angle (θ). An expression that could return the value of G was deduced using the deformation energy method. This technique is nondestructive and independent of knowing the value of Poisson’s ratio. Samples with different diameters of polytetrafluoroethylene (PTFE) were submitted to quasi-static torsion at the same aspect ratio. The aim was to present and validate the use of the technique for a known polymer. The approximate value of 350 MPa of the torsion modulus G was found for PTFE samples. As the values obtained are within the limits found in the literature, the technique can be used to study samples of polymers and other materials.

Keywords

deformation energy; force sensor; polytetrafluoroethylene (PTFE); rotational movement sensor; torsion modulus.

References

1 Jordan, J. L., Siviour, C. R., Foley, J. R., & Brown, E. N. (2007). Compressive properties of extruded polytetrafluoroethylene. Polymer48(14), 4184-4195. http://dx.doi.org/10.1016/j.polymer.2007.05.038

2 Brown, E. N., Rae, P. J., Bruce Orler, E., Gray, G. T. 3rd, & Dattelbaum, D. M. (2006). The effect of crystallinity on the fracture of polytetrafluoroethylene (PTFE). Materials Science and Engineering C26(8), 1338-1343. http://dx.doi.org/10.1016/j.msec.2005.08.009

3 Messner, K., & Gillquist, J. (1993). Synthetic implants for the repair of osteochondral defects of the medial femoral condyle: A biomechanical and histological evaluation in the rabbit knee. Biomaterials14(7), 513-521. http://dx.doi.org/10.1016/0142-9612(93)90240-3. PMid:8329524. 

4 Mercuri, L. G., & Giobbie-Hurder, A. (2004). Long-term outcomes after total alloplastic temporomandibular joint reconstruction following exposure to failed materials. Journal of Oral and Maxillofacial Surgery62(9), 1088-1096. http://dx.doi.org/10.1016/j.joms.2003.10.012. PMid:15346359. 

5 Renfrew, M. M., & Lewis, E. E. (1946). Polytetrafluoroethylene: heat resistant, chemically inert plastic. Industrial & Engineering Chemistry38(9), 870-877. http://dx.doi.org/10.1021/ie50441a009.

6 Thomas, P. E., Londz, J. F., Sperati, C. A., & McPherson, J. L. (1956). Effects of fabrication on the properties of Teflon resins. Society of PlasticEngineers Journal12, 89-95. 

7 Brown, N., & Parrish, M. (1972). Effect of liquid nitrogen on the tensile strength of polyethylene and polytetrafluoroethylene. Journal of Polymer Science. Polymer Letters Edition10(10), 777-779. http://dx.doi.org/10.1002/pol.1972.130101004

8 Kletschkowski, T., Schomburg, U., & Bertram, A. (2002). Endochronic viscoplastic material models for filled PTFE. Mechanics of Materials34(12), 795-808. http://dx.doi.org/10.1016/S0167-6636(02)00197-7

9 Rae, P. J., & Brown, E. N. (2005). The properties of poly(tetrafluoroethylene) (PTFE) in tension. Polymer46(19), 8128-8140. http://dx.doi.org/10.1016/j.polymer.2005.06.120

10 International Organization for Standardization. (2011). ISO 6721/1: plastics – determination of dynamic mechanical properties – part 1: general principles. Geneva: ISO. [ 

11 Andreozzi, L., Briccoli Bati, S., Fagone, M., Ranocchiai, G., & Zulli, F. (2014). Dynamic torsion tests to characterize the thermo-viscoelastic properties of polymeric interlayers for laminated glass. Construction & Building Materials65, 1-13. http://dx.doi.org/10.1016/j.conbuildmat.2014.04.003

12 Pintão, C. A. F., Correa, D. R. N., & Grandini, C. R. (2017). Torsion modulus using the technique of mechanical spectroscopy in biomaterials. Journal of Mechanical Science and Technology31(5), 2203-2211. http://dx.doi.org/10.1007/s12206-017-0416-6

13 Nowick, A. S., & Berry, B. S., editors (1972). Anelastic relaxation in crystalline solids. New York: Academic Press. http://dx.doi.org/10.1016/B978-0-12-522650-9.X5001-0. [

14 International Organization for Standardization. (1985). ISO 458/1: plastics – determination of stiffness in torsion of flexible materials – part 1: general method. Geneva: ISO. 

15 International Organization for Standardization. (2015). ISO 18338: metallic materials –torsion test at ambient temperature. Geneva: ISO. 

16 Nadai, A. (1950). Theory of flow and fracture of solids. New York: McGraw-Hill. 

17 Ebnesajjad, S. (2000). Fluoroplastics (Vol. 1). New York: Elsevier. 

18 Brown, E. N., & Dattelbaum, D. M. (2005). The role of crystalline phase on fracture and microstructure evolution of polytetrafluoroethylene (PTFE). Polymer46(9), 3056-3068. http://dx.doi.org/10.1016/j.polymer.2005.01.061

19 Starkweather, H. W. (1979). A comparison of the rheological properties of polytetrafluoroethylene below its melting point with certain low-molecular smectic states. Journal of Polymer Science. Part B, Polymer Physics17(1), 73-79. http://dx.doi.org/10.1002/pol.1979.180170106

20 Ansari, M., Vavlekas, D., McCoy, J. L., & Hatzikiriakos, S. G. (2015). Paste extrusion and mechanical properties of PTFE. International Polymer Processing30(5), 603-614. http://dx.doi.org/10.3139/217.3130

21 Ochoa, I., & Hatzikiriakos, S. G. (2005). Paste extrusion of polytetrafluoroethylene (PTFE): surface tension and viscosity effects. Powder Technology153(2), 108-118. http://dx.doi.org/10.1016/j.powtec.2005.02.007.

22 Ariawan, A. B., Ebnesajjad, S., & Hatzikiriakos, S. G. (2002). Properties of polytetrafluoroethylene (PTFE) paste extrudates. Polymer Engineering and Science42(6), 1247-1259. http://dx.doi.org/10.1002/pen.11028

23 Rae, P. J., & Dattelbaum, D. M. (2004). The properties of poly(tetrafluoroethylene) (PTFE) in compression. Polymer45(22), 7615-7625. http://dx.doi.org/10.1016/j.polymer.2004.08.064

24 Wilson, C. W., & Pake, G. E. (1953). Nuclear magnetic resonance determination of crystallinity in two polymers. Journal of Polymer Science. Polymer Physics Edition10(5), 503-505. http://dx.doi.org/10.1046/j.1365-2125.1999.00045.x

25 Moynihan, R. E. (1959). The molecular structure of perfluorocarbon polymers: infrared studies on polytetrafluoroethylene. Journal of the American Chemical81(5), 1045-1050. http://dx.doi.org/10.1021/ja01514a009

26 McCrum, N. G. (1959). Torsion pendulum method for determining crystallinity and void content of tetrafluoroethylene resins. ASTM Bull242, 80-82. 

27 Lehnert, R. J., Hendra, P. J., Everall, N., & Clayden, N. J. (1997). Comparative quantitative study on the crystallinity of poly(tetrafluoroethylene) including Raman, infra-red and19F nuclear magnetic resonance spectroscopy. Polymer38(7), 1521-1535. http://dx.doi.org/10.1016/S0032-3861(96)00684-2

28 César, J., Paoli, M.-A., & Andrade, J. C. (2004). A determinação da densidade de sólidos e líquidos. Campinas: Chemkeys. Retrieved in 2019, January 23, from: http://chemkeys.com/br/2004/07/17/a-determinacao-da-densidade-de-solidos-e-liquidos/ 

29 Tauchert, T. R. (1974). Energy principles in structural mechanics. New York: McGraw-Hill. 

30 Kausch, H. H. (1978). Polymer fracture. New York: Springer-Verlag Berlin Heidelberg. http://dx.doi.org/10.1007/978-3-642-96460-2

31 Timoshenko, S. P., & Goodier, J. N. (1980). Theory of elasticity (3rd ed.). Rio de Janeiro: Guanabara Dois. 

32 Agassant, J. F., Arda, D. R., Combeaud, C., Merten, A., Münstedt, H., Mackley, M. R., Robert, L., & Vergnes, B. (2006). Polymer processing extrusion instabilities and methods for their elimination or minimisation. International Polymer Processing21(3), 239-255. http://dx.doi.org/10.3139/217.0084

33 Patil, P. M., & Sadaphale, P. D. B. (2018). A study of plastic extrusion process and its defects. International Journal of Latest Technology in Engineering, Management & Applied Sciences (Basel, Switzerland)7(9), 13-20. 

34 Ionashiro, M. (2004). Princípios básicos da termogravimetria e análise térmica diferencial/calorimetria exploratória diferencial. São Paulo: GIZ Editorial. 

35 Callister, W. D. J., & Rethwisch, D. G. (2007). Materials science and engineering: an introduction. USA: John Wiley & Sons, Inc.

36 DuPont. (1996). Teflon PTFE fluoropolymer resin: properties handbook. USA: DuPont Fluoroproducts.

37 Caddock, B. D., & Evans, K. E. (1989). Microporous materials with negative Poisson’s ratios. I. Microstructure and mechanical properties. Journal of Physics. D, Applied Physics22(12), 1877-1882. http://dx.doi.org/10.1088/0022-3727/22/12/012

38 Vavlekas, D., Ansari, M., Hao, H., Fremy, F., McCoy, J. L., & Hatzikiriakos, S. G. (2016). Zero Poisson’s ratio PTFE in uniaxial extension. Polymer Testing55, 143-151. http://dx.doi.org/10.1016/j.polymertesting.2016.08.014

39 Vavlekas, D., Melo, L., Ansari, M., Grant, E., Fremy, F., McCoy, J. L., & Hatzikiriakos, S. G. (2017). Role of PTFE paste fibrillation on Poisson’s ratio. Polymer Testing61, 65-73. http://dx.doi.org/10.1016/j.polymertesting.2017.05.004

5e8d5e8f0e88251562c9ee3b polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections