Polímeros: Ciência e Tecnologia
Polímeros: Ciência e Tecnologia
Original Article

Polymeric nanoemulsions enriched with Eucalyptus citriodora essential oil

Flávia Oliveira Monteiro da Silva Abreu; Emanuela Feitoza Costa; Mayrla Rocha Lima Cardial; Weibson Pinheiro Paz André

Downloads: 1
Views: 749


Eucalyptus citriodora oil has a well-known antimicrobial activity, however, its volatility limits its therapeutic applicability. Oil-in-water chitosan-based nanoemulsions have been prepared using a high-energy method in variable conditions in order to produce a stable formulation with an effective antimicrobial action. Physical-chemical characterizations and antimicrobial activity were performed. Results showed that the nanoemulsions with stability over 60 days and encapsulation efficiency higher than 90% were the ones with higher surfactant content. An optimal formulation was produced with the longer chain surfactant, which impacted in a particle size of 489.2±0.25nm and encapsulation efficiency of 92.5±0.17%. This formulation showed sustained release over 72h according to zero order kinetics, where the drug diffusion is lower than the respective dissolution release rate. The bactericidal action of the tested formulations showed an expressive inhibition rate against S. typhimurium (73%), with potential for an effective release system for antimicrobial control.


chitosan, encapsulation, Eucalyptus citriodora


1 Donsì, F., & Ferrari, G. (2016). Essential oil nanoemulsions as antimicrobial agents in food. Journal of Biotechnology, 233, 106-120. http://dx.doi.org/10.1016/j.jbiotec.2016.07.005. PMid:27416793.

2 Semeniuc, C. A., Pop, C. R., & Rotar, A. M. (2017). Antibacterial activity and interactions of plant essential oil combinations against Gram-positive and Gram-negative bacteria. Yao Wu Shi Pin Fen Xi, 25(2), 403-408. http://dx.doi.org/10.1016/j.jfda.2016.06.002. PMid:28911683.

3 Benchaa, S., Hazzit, M., & Abdelkrim, H. (2018). Allelopathic effect of Eucalyptus citriodora essential oil and its potential use as bioherbicide. Chemistry & Biodiversity, 15(8), e1800202. http://dx.doi.org/10.1002/cbdv.201800202. PMid:29893506.

4 Khare, P., Srivastava, S., Nigam, N., Singh, A. K., & Singh, S. (2019). Impact of essential oils of E. citriodora, O. basilicum and M. arvensis on three different weeds and soil microbial activities. Environmental Technology Innovation, 14(4), 100343. http://dx.doi.org/10.1016/j.eti.2019.100343.

5 Tolba, H., Moghrani, H., Benelmouffok, A., Kellou, D., & Maachi, R. (2015). Essential oil of Algerian Eucalyptus citriodora: chemical composition, antifungal activity. Medical Mycology, 25(4), e128-e133. http://dx.doi.org/10.1016/j.mycmed.2015.10.009. PMid:26597375.

6 Bossou, A. D., Ahoussi, E., Ruysbergh, E., Adams, A., Smagghe, G., De Kimpe, N., Avlessi, F., Sohounhloue, D. C. K., & Mangelinckx, S. (2015). Characterization of volatile compounds from three Cymbopogon species and Eucalyptus citriodora from Benin and their insecticidal activities against Tribolium castaneum. Industrial Crops and Products, 76, 306-317. http://dx.doi.org/10.1016/j.indcrop.2015.06.031.

7 Lin, L., Chen, W., Li, C., & Cui, H. (2019). Enhancing stability of Eucalyptus citriodora essential oil by solid nanoliposomes encapsulation. Industrial Crops and Products, 140, 111615. http://dx.doi.org/10.1016/j.indcrop.2019.111615.

8 Singh, H. P., Kaur, S., Negi, K., Kumari, S., Saini, V., Batish, D. R., & Kohli, R. K. (2012). Assessment of in vitro antioxidant activity of essential oil of Eucalyptus citriodora (lemon-scented Eucalypt, Myrtaceae) and its major constituents. Lebensmittel-Wissenschaft + Technologie, 48(2), 237-241. http://dx.doi.org/10.1016/j.lwt.2012.03.019.

9 Lin, L., Cui, H., Zhou, H., Zhang, X., Bortolini, C., Chen, M., Liu, L., & Dong, M. (2015). Nanoliposomes containing Eucalyptus citriodora as antibiotic with specific antimicrobial activity. Chemical Communications, 51(13), 2653-2655. http://dx.doi.org/10.1039/C4CC09386K. PMid:25573466.

10 Paosen, S., Jindapol, S., Soontarach, R., & Voravuthikunchai, S. P. (2019). Eucalyptus citriodora leaf extract-mediated biosynthesis of silver nanoparticles: broad antimicrobial spectrum and mechanisms of action against hospital-acquired pathogens. APMIS, 127(12), 764-778. http://dx.doi.org/10.1111/apm.12993. PMid:31512767.

11 Franz, C., & Novak, J. (2015). Sources of essential oils. Boca Raton: CRC Press. http://dx.doi.org/10.1201/b19393-4.

12 Liu, Q., Zhang, M., Bhandari, B., Xu, J., & Yang, C. (2020). Effects of nanoemulsion-based active coatings with composite mixture of star anise essential oil, polylysine, and nisin on the quality and shelf life of ready-to-eat Yao meat products. Food Control, 107(33), 106771. http://dx.doi.org/10.1016/j.foodcont.2019.106771.

13 Ryu, V., Corradini, M. G., Mcclements, D. J., & Mclandsborough, L. (2019). Impact of ripening inhibitors on molecular transport of antimicrobial components from essential oil nanoemulsions. Journal of Colloid and Interface Science, 556, 568-576. http://dx.doi.org/10.1016/j.jcis.2019.08.059. PMid:31479830.

14 Lovelyn, C., & Attama, A. A. (2011). Current state of nanoemulsions in drug delivery. Journal of Biomaterials and Nanobiotechnology, 2(5), 626-639. http://dx.doi.org/10.4236/jbnb.2011.225075.

15 Majeed, H., Liu, F., Hategekimana, J., Sharif, H. R., Qi, J., Ali, B., Bian, Y.-Y., Ma, J., Yokoyama, W., & Zhong, F. (2016). Bactericidal action mechanism of negatively charged food grade clove oil nanoemulsions. Food Chemistry, 197(Pt A), 75-83. http://dx.doi.org/10.1016/j.foodchem.2015.10.015. PMid:26616926.

16 Colombo, M., Figueiró, F., Fraga Dias, A., Teixeira, H. F., Battastini, A. M. O., & Koester, L. S. (2018). Kaempferol-loaded mucoadhesive nanoemulsion for intranasal administration reduces glioma growth in vitro. International Journal of Pharmaceutics, 543(1-2), 214-223. http://dx.doi.org/10.1016/j.ijpharm.2018.03.055. PMid:29605695.

17 Ghosh, V., Mukherjee, A., & Chandrasekaran, N. (2013). Ultrasonic emulsification of food-grade nanoemulsion formulation and evaluation of its bactericidal activity. Ultrasonics Sonochemistry, 20(1), 338-344. http://dx.doi.org/10.1016/j.ultsonch.2012.08.010. PMid:22954686.

18 Nirmal, N. P., Mereddy, R., Li, L., & Sultanbawa, Y. (2018). Formulation, characterisation and antibacterial activity of lemon myrtle and anise myrtle essential oil in water nanoemulsion. Food Chemistry, 254, 1-7. http://dx.doi.org/10.1016/j.foodchem.2018.01.173. PMid:29548427.

19 Martins, A. F., de Oliveira, D. M., Pereira, A. G. B., Rubira, A. F., & Muniz, E. C. (2012). Chitosan/TPP microparticles obtained by microemulsion method applied in controlled release of heparin. International Journal of Biological Macromolecules, 51(5), 1127-1133. http://dx.doi.org/10.1016/j.ijbiomac.2012.08.032. PMid:22975304.

20 Casettari, L., & Illum, L. (2014). Chitosan in nasal delivery systems for therapeutic drugs. Journal of Controlled Release, 190, 189-200. http://dx.doi.org/10.1016/j.jconrel.2014.05.003. PMid:24818769.

21 Abreu, F. O. M. S., Oliveira, E. F., Paula, H. C. B., & Paula, R. C. M. (2012). Chitosan/cashew gum nanogels for essential oil encapsulation. Carbohydrate Polymers, 89(4), 1277-1282. http://dx.doi.org/10.1016/j.carbpol.2012.04.048. PMid:24750942.

22 Beyki, M., Zhaveh, S., Khalili, S. T., Rahmani-Cherati, T., Abollahi, A., Bayat, M., Tabatabaei, M., & Mohsenifar, A. (2014). Encapsulation of Mentha piperita essential oils in chitosan-cinnamic acid nanogel with enhanced antimicrobial activity against Aspergillus flavus. Industrial Crops and Products, 54, 310-319. http://dx.doi.org/10.1016/j.indcrop.2014.01.033.

23 Dalmoro, A., Bochicchio, S., Nasibullin, S. F., Bertoncin, P., Lamberti, G., Barba, A. A., & Moustafine, R. I. (2018). Polymer-lipid hybrid nanoparticles as enhanced indomethacin delivery systems. European Journal of Pharmaceutical Sciences, 121, 16-28. http://dx.doi.org/10.1016/j.ejps.2018.05.014. PMid:29777855.

24 Mutaliyeva, B., Grigoriev, D., Madybekova, G., Sharipova, A., Aidarova, S., Saparbekova, A., & Miller, R. (2017). Microencapsulation of insulin and its release using w/o/w double emulsion method. Colloids and Surfaces A, Physicochemical and Engineering Aspects, 521, 147-152. http://dx.doi.org/10.1016/j.colsurfa.2016.10.041.

25 Xiong, W., Ren, C., Tian, M., Yang, X., Li, J., & Li, B. (2018). Emulsion stability and dilatational viscoelasticity of ovalbumin/chitosan complexes at the oil-in-water interface. Food Chemistry, 252, 181-188. http://dx.doi.org/10.1016/j.foodchem.2018.01.067. PMid:29478530.

26 Shah, B. R., Zhang, C., Li, Y., & Li, B. (2016). Bioaccessibility and antioxidant activity of curcumin after encapsulated by nano and Pickering emulsion based on chitosan-tripolyphosphate nanoparticles. Food Research International, 89(Pt 1), 399-407. http://dx.doi.org/10.1016/j.foodres.2016.08.022. PMid:28460931.

27 Mwangi, W. W., Ho, K. W., Tey, B. T., & Chan, E. S. (2016). Effects of environmental factors on the physical stability of pickering-emulsions stabilized by chitosan particles. Food Hydrocolloids, 60, 543-550. http://dx.doi.org/10.1016/j.foodhyd.2016.04.023.

28 Ribeiro, J. C., Ribeiro, W. L. C., Camurça-Vasconcelos, A. L. F., Macedo, I. T. F., Santos, J. M. L., Paula, H. C. B., Araújo-Filho, J. V., Magalhães, R. D., & Bevilaqua, C. M. L. (2014). Efficacy of free and nanoencapsulated Eucalyptus citriodora essential oils on sheep gastrointestinal nematodes and toxicity for mice. Veterinary Parasitology, 204(3-4), 243-248. http://dx.doi.org/10.1016/j.vetpar.2014.05.026. PMid:24929446.

29 Dickinson, E. (2009). Hydrocolloids as emulsifiers and emulsions stabilizers. Food Hydrocolloids, 23(6), 1473-1482. http://dx.doi.org/10.1016/j.foodhyd.2008.08.005.

30 Almeida, A. C. S., Silva, J. P. M., Siqueira, A., & Frejlich, J. (1995). Medida de viscosidade pelo método de Ostwald: um experimento didático. Revista Brasileira de Ensino de Física, 17, 279-283. Retrieved in 2020, January 18, from http://www.sbfisica.org.br/rbef/pdf/vol17a35.pdf

31 Sugasini, D., & Lokesh, B. R. (2017). Curcumin and linseed oil co-delivered in phospholipid nanoemulsions enhances the levels of docosahexaenoic acid in serum and tissue lipids of rats. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 119, 45-52. http://dx.doi.org/10.1016/j.plefa.2017.03.007. PMid:28410669.

32 Almajano, M. P., Carbó, R., Delgado, M. E., & Gordon, M. H. (2007). Effect of pH on the antimicrobial activity and oxidative stability of oil-in-water emulsions containing caffeic acid. Journal of Food Science, 72(5), C258-C263. http://dx.doi.org/10.1111/j.1750-3841.2007.00387.x. PMid:17995712.

33 Calero, N., Muñoz, J., Cox, P. W., Heuer, A., & Guerrero, A. (2013). Influence of chitosan concentration on the stability, microstructure and rheological properties of O/W emulsions formulated with high-oleic sunflower oil and potato protein. Food Hydrocolloids, 30(1), 152-162. http://dx.doi.org/10.1016/j.foodhyd.2012.05.004.

34 Woranuch, S., & Yoksan, R. (2013). Eugenol-loaded chitosan nanoparticles: I. thermal stability improvement of eugenol through encapsulation. Carbohydrate Polymers, 96(2), 578-585. http://dx.doi.org/10.1016/j.carbpol.2012.08.117. PMid:23768603.

35 Keawchaoon, L., & Yoksan, R. (2011). Preparation, characterization and in vitro release study of carvacrol-loaded chitosan nanoparticles. Colloids and Surfaces. B, Biointerfaces, 84(1), 163-171. http://dx.doi.org/10.1016/j.colsurfb.2010.12.031. PMid:21296562.

36 Sing, A. J. F., Graciaa, A., Lachaise, J., Brochette, P., & Salager, J. L. (1999). Interactions and coalescence of nanodroplets in translucent O/W emulsions. Colloids and Surfaces A, Physicochemical and Engineering Aspects, 152(1-2), 31-39. http://dx.doi.org/10.1016/S0927-7757(98)00622-0.

37 Katata-Seru, L., Lebepe, T. C., Aremu, O. S., & Bahadur, I. (2017). Application of Taguchi method to optimize garlic essential oil nanoemulsions. Journal of Molecular Liquids, 244, 279-284. http://dx.doi.org/10.1016/j.molliq.2017.09.007.

38 Hafsa, J., Smach, M. A., Ben Khedher, M. R., Charfeddine, B., Limem, K., Majdoub, H., & Rouatbi, S. (2016). Physical, antioxidant and antimicrobial properties of chitosan films containing Eucalyptus globulus essential oil. Lebensmittel-Wissenschaft + Technologie, 68, 356-364. http://dx.doi.org/10.1016/j.lwt.2015.12.050.

39 Shakeri, A., Khakdan, F., Soheili, V., Sahebkar, A., Rassam, G., & Asili, J. (2014). Chemical composition, antibacterial activity, and cytotoxicity of essential oil from Nepeta ucrainica L. spp. kopetdaghensis. Industrial Crops and Products, 58, 315-321. http://dx.doi.org/10.1016/j.indcrop.2014.04.009.

40 Knezevic, P., Aleksic, V., Simin, N., Svircev, E., Petrovic, A., & Mimica-Dukic, N. (2016). Antimicrobial activity of Eucalyptus camaldulensis essential oils and their interactions with conventional antimicrobial agents against multi-drug resistant Acinetobacter baumannii. Journal of Ethnopharmacology, 178, 125-136. http://dx.doi.org/10.1016/j.jep.2015.12.008. PMid:26671210.

41 Tang, D. W., Yu, S. H., Ho, Y. C., Huang, B. Q., Tsai, G. J., Hsieh, H. Y., Sung, H. W., & Mi, F. L. (2013). Characterization of tea catechins-loaded nanoparticles prepared from chitosan and an edible polypeptide. Food Hydrocolloids, 30(1), 33-41. http://dx.doi.org/10.1016/j.foodhyd.2012.04.014.

42 Araújo-Filho, J. V., Ribeiro, W. L. C., André, W. P. P., Cavalcante, G. S., Guerra, M. C. M., Muniz, C. R., Macedo, I. T. F., Rondon, F. C. M., Bevilaqua, C. M. L., & Oliveira, L. M. B. (2018). Effects of Eucalyptus citriodora essential oil and its major component, citronellal, on Haemonchus contortus isolates susceptible and resistant to synthetic anthelmintics. Indrustial Cropsand Products, 124, 294-299. http://dx.doi.org/10.1016/j.indcrop.2018.07.059.

43 Farag, N. F., El-Ahmady, S. H., Abdelrahman, E. H., Naumann, A., Schulz, H., Azzam, S., & El-Kashoury, E. S. A. (2018). Characterization of essential oils from Myrtaceae species using ATR-IR vibrational spectroscopy coupled to chemometrics. Industrial Crops and Products, 124, 870-877. http://dx.doi.org/10.1016/j.indcrop.2018.07.066.

44 Morais, A. R. V., Alencar, É. N., Xavier, Jr., F. H., Oliveira, C. M., Marcelino, H. R., Barratt, G., Fessi, H., Egito, E. S. T., & Elaissari, A. (2016). Freeze-drying of emulsified systems: a review. International Journal of Pharmaceutics, 503(1-2), 102-114. http://dx.doi.org/10.1016/j.ijpharm.2016.02.047. PMid:26943974.

45 Fernandes, R. V. D. B., Borges, S. V., & Botrel, D. A. (2014). Gum arabic/starch/maltodextrin/inulin as wall materials on the microencapsulation of rosemary essential oil. Carbohydrate Polymers, 101, 524-532. http://dx.doi.org/10.1016/j.carbpol.2013.09.083. PMid:24299808.

46 Dash, S., Murthy, P. N., Nath, L., & Chowdhury, P. (2010). Kinetic modeling on drug release from controlled drug delivery systems. Acta Poloniae Pharmaceutica Drug Research, 67(3), 217-223. PMid:20524422.

47 Lopes, C. M., Lobo, J. M. S., & Costa, P. (2005). Formas farmacêuticas de liberação modificada: polímeros hidrifílicos. Revista Brasileira de Ciências Farmacêuticas, 41(2), 143-154. http://dx.doi.org/10.1590/S1516-93322005000200003.

48 Dima, C., Cotârlet, M., Alexe, P., & Dima, S. (2014). Reprint of “Microencapsulation of essential oil of pimento [Pimenta dioica (L) Merr.] by chitosan/k-carrageenan complex coacervation method”. Innovative Food Science & Emerging Technologies, 25, 97-105. http://dx.doi.org/10.1016/j.ifset.2014.07.008.

5f737e300e8825e2610499b3 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections