Polímeros: Ciência e Tecnologia
https://www.revistapolimeros.org.br/article/doi/10.1590/0104-1428.00720
Polímeros: Ciência e Tecnologia
Original Article

Antioxidant stone water (human/friendly environment) thermal (thermogravimetric-tga) combustion properties in biohazard (insect/fungus) wood

Hüseyin Tan; Hatice Ulusoy; Hüseyin Peker

Downloads: 0
Views: 636

Abstract

In this study, four different wood species walnut (Juglans regia L.), chestnut (Castanea sativa Mill.), Poplar (Populus nigra), scotch pine (Pinus sylvestris L.) were chosen and test samples were prepared according to TS 2470 principles. Especially the pine wood by taking the structure (with fungus, fungus/insect, insect), flawless wood structure is compared with the flawed wood structure. The impregnation process was carried out according to ASTM D 1413 -76 principles. Effects of the chemical characteristics of the determined Stone Water (Firetex) on the thermal decomposition properties of wood (burning degrees, degradation temperature points and residue amount) were determined with TGA (thermogravimetric analysis). According to the results of the experiment; the highest retention value was found in poplar (23.56%) and the lowest retention (12.79%) in chestnut was determined. Amount of residue; 60.84% of the highest on scotch pine wood with fungus and 56.70% of the lowest value was determined on poplar wood. Thermal deterioration was determined between 226.41-405.04 oC on wood .

Keywords

stone water, walnut, chestnut, poplar, scots pine, thermal properties

References

1 Kolman, F., & Cote, J. R. (1968). Principles of wood science and technology: I Solid Wood. Berlin: Springer-Verlag Berlin Heidelberg. http://dx.doi.org/10.1007/978-3-642-87928-9.

2 Terzi, E. (2008). Combustion properties of wood material impregnated with Ammonium Compounds (Master’s dissertation). İstanbul University Institute of Science, Turkey.

3 Baysal, E., Peker, H., Çolak, M., & Tarımer, İ. (2003). Combustion properties of varnished wood material and the effect of pre-impregnation with boron compounds on fire retardant effect. Fırat Unıversity Journal of Science and Engineering Sciences, 15(4), 645-653.

4 Evan, S. L. (1989). Thermal degredation. In: A. P. Schniewind, Concise encylopedia of wood&wood based materials (pp. 271-273). New York: Pergamon Press.

5 Russel, L. J., Marney, D. C. O., Humphrey, D. G., Hunt, A. C., Dowling, V. P., & Cookson, L. J. (2007). Combining fire retardantand preservative systems fortimber products in exposedapplications-state of the art review (Project no: PN04, 10-12). Australia: Forest and Wood Products Research and Development Corporation.

6 Yalınkılıç, M. K., Demirci, Z., & Baysal, E. (1998). Effects of various impregnating agents on the burning properties of duglas [Pseudotsuga menziesii (Mirb.) Frankco] wood. Pamukkale Ünversity Engineering Science Journal, 4(2), 613-624.

7 Uysal, B. (1998). Burning properties of alder wood of various water-repellent and fire-retardant chemicals. Zonguldak Karaelmas Unıversity Technology Journal, 2, 81-89.

8 Çavdar, A. D., Mengeloğlu, F., & Karakuş, K. (2015). Effect of boric acid and borax on mechanical, fire and thermal properties of wood flour filled high density polyethylene composites. Measurement, 60, 6-12. http://dx.doi.org/10.1016/j.measurement.2014.09.078.

9 Price, D., Anthony, G., & Carty, P. (2001). Polymer combustion, condensed phase pyrolysis and smoke formation. In A. R. Horrocks, & D. Price (Eds.), Fire Retardant Materials (pp. 1-30). Cambridge, UK: Woodhead Publishing.

10 Uysal, B. (1997). Effects of various chemicals on the fire resistance of wood materials (Master’s dissertation). Turkey: Gazi Ünıversity Institute of Science.

11 White, R. H., & Dietenberger, M. A. (1999). Fire safety. In Forest Products Laboratory. Wood handbook: wood as an engineering material (pp. 17.1-17.16). Madison, WI: USDA Forest Service.

12 Tomak, E. D., & Çavdar, A. D. (2013). Limited oxygen index levels of impregnated Scots pine wood. Thermochimica Acta, 573, 181-185. http://dx.doi.org/10.1016/j.tca.2013.09.022.

13 Kesik, H. İ., Aydoğan, H., Çağatay, K., Özkan, O. E., & Maraz, E. (2015). Fire Properties of Scots Pine Impregnated with Firetex. In International Conference on Environmental Science and Technology (pp. 122-127). Sarajevo: ICOEST.

14 Özcan, C., Kurt, Ş., Esen, R., & Korkmaz, M. (2016). The determinate combustion properties of fir wood impregnated with fire-retardants. The Online Journal of Science and Technology, 6(3), 77-82.

15 Tutuş, A., Kurt, R., Alma, M. H., & Meriç, H. (2010). Chemıcal analysis of scotch pine wood and its thermal properties. In III Ulusal Karadeniz Ormancılık Kongresi (pp. 1845-1851). Artvin: Artvin Çoruh Üniversitesi Orman Fakültesi. Retrieved in 2020, June 17. from http://karok3.artvin.edu.tr/V.Cilt/(1845-1851).pdf

16 Jiang, J., Li, J., Hu, J., & Fan, D. (2010). Effect of nitrogen phosphorus flame retardants on thermal degradation of wood. Construction & Building Materials, 24(12), 2633-2637. http://dx.doi.org/10.1016/j.conbuildmat.2010.04.064.

17 Yunchu, H., Peijang, Z., & Songsheng, Q. (2000). TG-DTA studies on wood treated with flame retardants. Holz als Roh- und Werkstoff, 58(1), 35-38. http://dx.doi.org/10.1007/s001070050382.

18 Flynn, K. A. (1995). Review of the permeability, fluid flow, and anatomy of spruce (Picea spp.). Wood Fiber Scieence. 27(3), 278-284.

19 Basak, S., Samanta, K. K., Chattopadhyay, S. K., & Narkar, R. (2015). Thermally stable cellulosic paper made using banana pseudostem sap, a wasted by-product. Cellulose, 22(4), 2767-2776. http://dx.doi.org/10.1007/s10570-015-0662-7.

20 Shafizadeh, F. (1982). Introduction to pyrolysis of Biomass. Journal of Analytical and Applied Pyrolysis, 3(4), 283-305. http://dx.doi.org/10.1016/0165-2370(82)80017-X.

21 Collard, F.-X., & Blin, J. (2014). Review on pyrolysis of biomass constituents: mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin. Renewable & Sustainable Energy Reviews, 38, 594-608. http://dx.doi.org/10.1016/j.rser.2014.06.013.

22 Beall, F. C., & Eickner, H. W. (1970). Thermal degradation of wood components: a review of the literature. Madison, WI: U.S. Forest Products Laboratory. US Department of Agriculture United States Forest Service.

23 Jeske, H., Schirp, A., & Cornelius, F. (2012). Development of a Thermogravimetric Analysis (TGA) method for quantitative analysis of wood flour and polypropylene in Wood Plastic Composites (WPC). Thermochimica Acta, 543, 165-171. http://dx.doi.org/10.1016/j.tca.2012.05.016.

24 Slopiecka, K., Bartocci, P., & Fantozzi, F. (2012). Thermogravimetric analysis and kinetic study of poplar wood pyrolysis. Applied Energy, 97, 491-497. http://dx.doi.org/10.1016/j.apenergy.2011.12.056.

25 Haberler.com. Balıkesir 'stone water' study against cancer. (2019). Retrieved in 2020, June 17, Retrieved from https://www.haberler.com/balikesir-kansere-karsi-tas-suyu-calismasi-12430326-ha/
 

5f6de9fe0e8825920397b915 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections